
TRS-SO@ Model Ill

Disk System
Owner's Manual

(Preliminary Version)

MA DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

SOFTWARE REGISTRATION CARD

IMPORTANT: In order that you can receive notification
of modifications or updates of this program you MUST
complete this card and return it immediately. This card
gets you information only and is NOT a warranty
registration.

Name ________________ _ 12010181
Version/Date

Company _______________ _

Address _______________ _

City ________________ _ Cat. No. ---<-=..!-6-""'------'- l.........,0""'---6-...3,..___

State ___________ Zip ____ _ Purchase Date _____ _

CHANGE OF ADDRESS
NOTE: If you move, please fill out this card and return it so that you may continue to
receive information regarding this program.

Purchase Date _______ _ 12010181
Version/Date

Cat. No. _ 2._...6,.__-___ l0 ___ 6=-.c3~-
NEW ADDRESS: OLD ADDRESS:

Name _____________ _ Name ____________ _

Company ___________ _ Company ___________ _

Address ____________ _ Address ____________ _

City _____________ _ City _____________ _

State ________ Zip ___ _ State ________ Zip ___ _

INSTRUCTIONS FOR USE

1. Register one software package per card only.

2. Complete the Software Registration portion of this form and mail it immediately.
The Catalog No. may be found by examining the upper-right corner of your diskette.

3. For convenience a change of address card has been included. Copy all information
from the Registration Card onto it prior to sending the Registration Card.

Computer Merchandising
P.O. Box 2910
Fort Worth, Texas 76102

Attn: Software Registration

Computer Merchandising
P.O. Box 2910
Fort Worth, Texas 76102

Attn: Software Registration

PLACE
STAMP
' HERE

PLACE
STAMP
HERE

1tad1e lllaek RESEARCH AND DEVELOPMENT 817-390-3011

A Division of Tandy Corporation 1000 TWO TANDY CENTER, FORT WORTH, TEXAS 76102

September, 19 80 '

To Our Customers

To make your new TRS-80 Model III Disk System available as
quickly as possible, we've assembled this preliminary
manual so you can begin using your Computer system right
away.

If you'll fill out and return the enclosed claim card,
we'll send the permanent Disk System Owner's Manual to
you as soon as it's available.

THE BIGGEST NAME IN LITTLE COMPUTERS

-----------TRS-SO(fi.D __________ _

Addendum for the
Model III Disk System Owner's Manual

(Preliminary Version)

Please add the following notes and changes to your manual.

PAGE 111-115, CONVERT UTILITY. Here is a suggestion to simplify
the transfer of your Model I TRSDOS files onto a Model III
TRSDOS diskette.

Using a Model I Disk System, remove all passwords from the
diskette to be converted. You can do this with the PROT command,
as described in the Model I TRSDOS/Disk BASIC owner's Manual,
page 4-23.

Now that the passwords are removed, you may use the Model III
CONVERT utility and then use PROT or ATTRIB to restore password
protection, as described on pages 43 and 93 of the Model III
Disk Manual.

Converting Data Diskettes with a Two-Drive System

With a two-drive system, you must convert the Model I files onto
a Model III TRSDOS "full system" in Drive 0. (To make sure there
is enough room for all the files, you may want to delete all
non-system files from the Model III system diskette in drive 0.)

After you have completed the convert/copy process, you may copy
the files onto a Model III TRSDOS "data diskette" in drive 1.

----------- ltadaolllaell-----------
- l -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM
-----------TRS-B0i11'1,, __________ _

FORMAT Utility

At the beginning of the formatting process, there is a delay of
about 30 seconds while TRSDOS searches for data on the
destination diskette. After this delay, TRSDOS will begin
initializing the diskette tracks.

Page 33. General Notes on Entering TRSDOS Commands

In TRSDOS commands which contain file specifications or option
lists, there must be exactly one blank space after the command
and after each file name.

Examples

NOTE: In the following examples,
11 ~" represents a mandatory
single blank space.

CLOCK~ (OFF)

ATTRIB-PAYROLL/BA.S.SECRET-(N,ACC=,UPD=PETE,PROT=READ)

COPY-FILE/A-FILE/B

"Wild-Card" File Name Specifications in COPY and KILL commands

COPY and KILL can find all files with a specified extension.
This is called a wild-card capability. To use it, specify the
extension only. TRSDOS will find and use all files with the
specified extension, regardless of the file name. (In the COPY
command, you must also include a destination drive number after
the wild-card specification.)

The command:

COPY-/BA.S:0~:1

tells TRSDOS to copy all Drive O files which have the extension
/BAS. The files will be copied onto Drive 1, using their present

----------lladtelllaell----------

- 2 -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM

-----------TRs-eo@ __________ _

file names and extensions.

The command:

KILL-/TXT:0

Tells TRSDOS to kill all Drive O files which have the extension
/TXT.

PAGES 43-44, ATTRIB COMMAND. You may give a BASIC program
execute-only protection using the ATTRIB command. For example,
suppose the program is named TEST (no password). Under TRSDOS
READY, execute this command:

ATTRIB-TEST-(ACC=,UPD=VALLEY,PROT=EXEC)

Now TEST has a blank access password, an update password of
VALLEY, and an access level of execute only. Without using the
update password, there is now only one way to execute the
program:

1. Start BASIC.
2. Type:

RUN "TEST"
(This is the only way to access the program. If the
operator attempts to LOAD it instead, BASIC will
erase the program from memory before returning with
READY.)

After the RUN "TEST" command, BASIC will load and execute the
program. If the operator presses <BREAK> or if the program ends
normally, BASIC will erase the program before returning with the
READY message. This makes it is impossible to obtain a listing
of the program--unless the update password is used.

Of course, if you use the update password, you may gain full
access to the program.

Page 60. DEBUG can only be used on programs in the user area,
X'5600' to TOP (decimal 22016 to TOP).

---------- ladlelllaeli----------
- 3 -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM
-------------TRS-BO'T'-1) ____________ _

Page 71. In the directory ATRB column, fourth character:

0 = Full access
l = Kill and all privileges below
2 = Rename and all privileges below
3 = This designation is not used
4 = Write and all privileges below
5 = Read and all privileges below
6 = Execute only
7 = No access

In the number of records and extents columns, a zero (not an
asterisk) indicates none have been allocated.

Page 76. In the DUMP command syntax, the START address must be
greater than X'6FFF'.

Page 99. In the ROUTE syntax, there must be a comma after the
'SOURCE=aa' field:

ROUTE-(SOURCE=aa,DESTIN=bb)

Page 126. Change line 3.
Was: CALL 44364
Change to: CALL 4436H

----------- ltadaelllaell-----------
- 4 -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM

-----------TRS-BO (r_~)-----------
Pages 127 - 134. Change the jump vector addresses for PUTEXT,
BACKSPACE, POSEOF, DIVIDE, DMULT, RAMDIR, FILPTR.

Routine

PUTEXT
BACKSPACE
POSEOF
DIVIDE
DMULT
RAMDIR
FILPTR*

Jump Vector
Decimal Hexadecimal

17483
17477
17480
17489
17486
17040
17037

444B
4445
4448
4451
444E
4290
428D

* In FILPTR, the contents of register A is not significant on
entry to the routine. ("A= 424C" is an error.)

Page 135. Supplementary Information. Change addresses.

Item (2). X'4225' contains the address of the 64-byte buffer
which contains the last command entered.

Item (3). The correct call address for the time of day is
X'3036'. The correct call address for the date is X'3033'.

Additional Information:

Address X'4411' contains the address of the end of RAM.

----------- llad1elllaeli----------
- 5 -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM
------------TRS-SO'TM,; ___________ _

New System Calls

DSPDIR X'4419'
Display Directory

To display the directory of non-protected user files, set up the
entry conditions and execute a call to DSPDIR.

On entry, X'4271' should contain the ASCII-coded drive number,
"O", "1", "2", or "3".

On exit, all registers are changed.

COMDOS X '4299'
Execute a TRSDOS Command and Jump to TRSDOS READY

Set up the entry conditions and execute a call to COMDOS.

On entry, (HL) = Text of the TRSDOS command, terminated by
X'OD'.

CMDDOS X '429C'
Execute a TRSDOS Command and Return to Caller

Set up the entry conditions and execute a call to CMDDOS.

On entry, (HL) = Text of TRSDOS command, terminated by X'0D'.

On exit, all registers are changed.

CMD "R" and CMD"T" (pages 144, 164, 167) switch the clock
display on and off, respectively. They do not turn the internal
clock on or off.

-----------ladaolllaeli----------
- 6 -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM
-------------TRS-BO(fM) ____________ _

Page 56. The CREATE command fills each allocated sector with
binary zeroes. If you open the file for sequential writes,
TRSDOS will de-allocate (recover) any unused granules when the
file is closed. If you open the file for random access, TRSDOS
will not de-allocate space when the file is closed.

Page 160. The syntax for CMD "O" is:

CMD "O", x, array(start}

where 'x' is an integer variable containing the number of items
to be sorted, and 'array(start)' specifies an array element. The
array contains the data to be sorted, and 'start' is the
subscript indicating where the sort should start.

The array must be one-dimensional, string type. The string
elements in the array may be of any length.

Page 170. Change the syntax for the CMD "Z" command.

CMD 11 Z11 , switch

where 'switch' is a string expression containing either of two
values: ON or OFF. If 'switch' is a constant, it must be
enclosed in quotation marks.

For example:

CMD fl z II , ft ON II

turns dual routing on.

CMD fl z II, "OFF"

turns it off.

-----------ladae/llaell-----------
- 7 -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM
------------TRS-ao@ ___________ _

BASIC Command to Disable/Enable <BREAK>

CMD "B", switch

where 'switch' is a string expression containing either of two
values: ON or OFF. If 'switch' is a constant, it must be
enclosed in quotation marks.

This command lets you protect a program from being interrupted
by the <BREAK> key. After the command,

CMD "B II , II ON II

the <BREAK> key will be ignored unless it is pressed during
cassette or printer output or serial input/output.

The BREAK key will remain disabled after the program has ended.
It will be re-enabled when you return to TRSDOS via CMD 11 S 11 or
CMD 11 I II.

BASIC Program Renumbering Command

NAME newline, startline, increment

where 'newline' specifies the new line number of the first line
to be renumbered. If omitted, 10 is used.

'startline' specifies the line number in the original
program where renumbering will start. If omitted, the entire
program will be renumbered.

'increment' specifies the increment to be used between
each successive line number. If omitted, 10 is used.

Examples

NAME

Renumbers an entire program: 10, 20, 30, •••

NAME 6000,5000,100

Renumbers all lines numbered from 5000 up; the first renumbered

------------ltadaelllaeli------------
- 8 -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM
-----------TRS-BO f_M: __________ _

line will become 6000, and an increment of 100 will be used
between subsequent lines.

BASIC Disk File Access

PAGE 121. When you start Disk BASIC, you are asked,

HOW MANY FILES?

In addition to determining the number of files open at once,
this question lets you select either 256-byte records or
variable-length* records. If you select variable-length records,
you determine the record length of each file when the file is
opened.

* In this manual, the term "variable-length" simply means the
length is set when the file is opened, and may be from 1 to 256.
For any given file, each record in the file has the same length.

If you want to use 256-byte records in all files, type in the
desired number of files and press <ENTER>. To use files with
record lengths from 1 to 256, add the letter "Vn immediately
after the number of files (no comma).

PAGE 192. OPEN Statement. To the list of values for 'expl$', add
the following:

expl$=

E

access mode

(Extend). Sequential output,
starting at the end of file.

Use this access mode to add to the end of an existing sequential
file. For example,

OPEN "E", 1, "TEST"

Opens the file TEST for sequential output. Then first PRINT#
statement will add data to the end of the file.

----------ladaelllaeli----------
- 9 -

MODEL III DISK SYSTEM OWNER'S MANUAL ADDENDUM
------------TRs-so@ ___________ _

PAGE 206. FIELD Statement. The sum of all the field-lengths
should equal the record length of the file (256 unless you are
using variable-length files). The sum must not exceed the record
length.

PA11E 94. PUR~E Command. On system diskettes, there are certain system
files that do not appear in the directory listin~. To convert a system
diskette into a data diskette, you may use a special form of PURGE:

PURGE* (options)

The asterisk tells TRSOOS to ask you if you want to rlelete the system
files. The options are as defined in the syntax block. If you delete
the system files, the diskette may no longer be used in drive o.

10/80 - 8759077
- 10 -

------------TRS-eo@ __________ _

TRS-80 Model III

Disk System Owner's Manual

(Preliminary Version)

-----------ladlellllleli----------

MODEL III DISK SYS'rEM OWNERS MANUAL
-----------TRs .. ao l"! -----------

·rRS-80 Model III Disk System Owner's Manual: @) 1980
Corporation, Fort Worth, Texas 76102 U.S.A.
All Rights Reserved.

Reproduction or use, without express written permission
Tandt Corporation of any portion of this manual is prohib
While reasonable efforts have been taken in the preparation
this manual to assure its accuracy, •randy Corporation assumes no
liability resulting from any errors or amiss sin this manual
or from the use of the information obtained in.

Model III 'l'RSDOS (TM) Operating System: @ 1980
Tandy Coporation, Fort Worth, Texas 76102 U.S
All Rights Reserved

Model III System Software: @ 1980 Tandy Corporation and
Microsoft.
All Rights Reserved.

The system software in the Model III microcomputer is retained
in a read-only memory (ROM) format. All portions of this system
software, whether in the ROM format or other source code form
format, and the ROM circuitry are copyrighted and are the
proprietary and trade secret information of Tandy Corporation
and Microsoft. Use, reproductions, or publication of any portion
of this material without the prior written authorization by
Tandy Corporation is strictly prohibited.

----------rtad1elhaeli-----------

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRs-eo@ _________ _

Contents
=================

To Our Customers •••••••••••.••.••••••••• 1

Part I -- Operation .••••••••• 3

Installation •••••••••••••.•••••••••••••• 5

Operation 8

Computer Description •••••••••••••..••.•• 8
Power-On/Off Switch RESET Drives

Diskette ••.••••••••••.•••••••.•••••••••• 10
Description Care

System Start-Up •.•••.••••••••••••••••••• 12

TRSDOS Start-Up ••••••••••••••••••••••••• 13

Important Disk Operations ••••••••.•.•••• 14
BACKUP FORMAT

Disk BASIC 18
Quick Instructions Start-UP Loading

Troubleshooting and Maintenance ••••••••• 21

Notation and Abbreviations ..•••••••••••• 23

Specifications •••••••••••••••••••••••••• 25

Part II -- TRSDOS •••••••••••• 26

Description of TRSDOS ••••••••••••••••••• 27
Roles BASIC RAM Use Memory Map

Using TRSDOS •••••••••••••••••••••••••••• 31

Commands ••••••• ••••••••••••••••••••••••• 31
Entering Syntax Forms

File Specifications ••••••••••••••••••••• 35

----------ladlelllaeli----------

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO'Tl:,IJ _________ _

File Names 36

Drive Specifications 37

P-as sword . .•••.••••..••.••••.....•••••••• 3 7

Definitions •...............•.••........• 39

Library Commands•.•.... 41

Utility Commands•...•.• 108

Technical Information•..... 117

Disk Organization•....•• 118

File Structuring .•......•...•........... 119

System Routines for Assembly I/0•.• 121
Data Blocks Records
TRSDOS I/0 Calls

TRSDOS Error Codes/Messages•..... 137

Part III -- Disk BASIC ..•..... 139

Introduction 141

Enhancements to Model III Disk BASIC 144
Abbreviations Commands

Disk-Related Features•......•..... 184
File Manipulation File Access

Methods of File Access .•.....•.......... 218
Sequential Random

Disk BASIC Error Codes/Messages•. 232

Index 233

Customer Information•........ 2~7

Warranty•................ Back Cover

----------rtadtelhaell----------

M_o_D_E_L_r_r_r_D_I_s_K_s_Y_sT_E_M ____ TRS-BO ,1~, ______ o_w_N_E_R_s_MA_N_u_A_L_

To Our Customers

Congratulations on your purchase of the Model III Disk System.
We think it's a valuable tool which will save you work as well
as give you hours of enjoyment (or maybe both at once). You'll
have all the power of the non-disk Model III, plus the following
features:

. Your Computer can now be controlled by TRSDOS (TM), the
powerful TRS-80 Disk Operating System. TRSDOS
is included on a diskette with the Disk System .

. Using TRSDOS, you can run a wide variety of programs,
such as the Disk BASIC interpreter included on the TRSDOS
diskette •

. Each "system" diskette has approximately 126,720 bytes of
storage available for your own programs and data; each
"data" diskette has 184,320 bytes available •

. You can load and save data at the approximate rate of
250,000 bits per second .

• Your system can continue to grow in power and
convenience. When Radio Shack issues improvements and
enhancements to the system programs, you can "install"
them simply by obtaining a new-release TRSDOS diskette.

Model III Manuals

There are four publications related to the use of the Model III
Disk System:

1. Model III Disk System Owner's Manual (this manual). We'll
call it the "Disk Manual" for short.

2. Model III Disk System Quick Reference Card

3. Model III Operation and BASIC Language Reference Manual, the
"Model III Manual" for short.

----------llad1elllaeli----------
PAGE 1

M_o_o_E_L_r_r_r_o_r_s_K_s_Y_sT_E_"M ____ TRS-BO Ji~) ______ ow_N_E_R_s_MA_N_u_A_L_

4. Model III Quick Reference Card

For Disk Operation:

This Disk Manual supplements the Model III Manual. Use it as the
primary source of information; we'll tell you when to refer to
the non-disk Model III Manual.

For Non-Disk Operation

To use the Computer as a NON-DISK system, all you need is the
Model III Manual.

For Programming Information:

The Model III Manual contains most of the programming
information, except that which pertains to disk input/output. In
this manual, we will assume that you are familiar with the BASIC
programming definitions and details given in the Model III
Manual.

----------ltadaelllaell----------
PAGE 2

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO TM, _________ _

About 'rhis Manual

The Mode; III Disk System is intended for use by novices as well
as experienced computer operators and programmers. In designing
and writing this Disk Manual, we've tried to define and satisfy

needs of both groups:

. Novices who might prefer a sequential presentation which
emphasizes procedures and explains the purpose of
various features .

. Experienced users who might prefer a more analytical
presentation which makes it easy to find specific
information.

In this manual, you 1 ll find information that should satisfy your
needs, whichever group you might belong to.

'l'he "Sample Sessions" are especially geared for novices, while
the "Technical Information" chapters are for the more exprienced
users.

Keep in mind, however, that it isn't necessary to read the
entire manual to operate the sk system. If you are only
interested in Disk BASIC, for example, read the Operation
section of this book and then turn directly to the Disk BASIC
section. You can then go back to the TRSDOS section when you
need to.

Special Terms

Even in the non-technical sections of this manual, we've had to
use numerous special terms. Rather than scattering and repeating
definitions throughout the book, we have used the following
convention which we hope you'll find helpful.

Special terms which are fully defined in another part of the
manual are printed in ~boldface~. Look up the word or phrase in
the Index; this will tell you where the word is fully defined.

----------1tad1elllaeli----------
PAGE j

-----------TRS-BO "iM, _________ _

Part I OPERATION

---------- ltadaelllaell----------

4

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO'fM) __________ _

Installation

First set up the Computer according to the instructions in
Section 1, Chapter 2 of the Model III Manual.

If you have a one- or two-drive system, installation is now
complete. The built-in drives should be ready for use, and you
can proceed to the Operation section in this manual.

If you have a three- or four-drive system, you need to connect
the external drives. Refer to the disk drive owner's manual for
specific instructions.

External Disk Drives

The two external drives are NOT interchangeable. They have
different Radio Shack Catalog Numbers and a few internal
differences.

First External Drive Purchased
(Includes Cable)

Second External Drive Purchased

System
Name

"Drive 2/3"

"Drive 2"

Catalog
Number

26-1164

26-1161

Notice that the 26-.1164 drive may be used as system drive 2 or
3, depending on the number of drives in the system. In a
three-drive system, it is always drive 2 (the last drive). In a
four-drive system, it is always drive 3 (again, the last drive).

The 26-1161 drive may only be used in a four-drive system, in
which it must be drive 2.

l. Locate the flat "ribbon" cable that was included with the
26-1164 drive. Notice that it has a single plug on one end, and
two plugs clustered at the other end. See Figure 1 for plug
labels.

2. Connect the solitary "Computer" plug to the Disk Expansion

---------lladtelllaeli---------

PAGE 5

MODEI, I I I D.l SK SYS'r.EM OWNERS MANUAL
_,..,..,., _,.,.,._.,.& •-i1-!'Jill!!,...Ml'll ... r_.,_, ..,.,..,~i --;-. , ... ,-~ ,,..,..,, ...,n...,...,..., ,,_..in:ns TRS·~BO i·f~.i •■1--•-•-•-••-•---•-,. •-••-•-•11•-••-••-•-•-••-•-•••-••-•----

,Jack on the bott.om rear of the Compub~r. See :Figure 2,

3. Connect the external drive(s) to the other end of the cable,
as follows:

3-A. If you have one external drive (26-1164):
Connect it to the "Drive 2n plug near the middle of the ribbon
cable.

3-B. If you ha.ve two external drives {26-·1164 and 26--1161):
Connect the 26-1164 to the "Drive 3• plug on the end of the
cable. Connect the 26-1161 to the "Drive 2° plug near the middle
of the cable.

4. Plug the external drive(s) into an appropriate source of AC
power. Power requirements are specified on the u.nit and in the
specifications given in this manual.

You are now ready to start the Disk System.

Computer Plug

Drive 2 Plug Drive 3 Plug

Figure 1. External Disk Cable with Plugs Labeled.

--------- ltadaelhaeli---■-------

PAGE 6

M_o_D_E_L_r_r_r _o_r_s_K_s_Y_s_T_E_M ___ TRS-BO rfi~. _______ o_w_N_E_'R_s_MA_N_i:_JA_L_

Figure 2. Connection of the external disk cable to the Model
III.

Attach the plug so the cable exits toward the REAR the
Computer.

,' /, -

--4,l_ '<.e,:/ ___ _

----------ladaelllaell----------
PAGE 7

M_o_n_E_L_r_r_r_o_r_s_K_s_Y_s_T_E_M ___ TRS-BO ,t.~, ______ o_w_N_E_R_s __ MA......,N_UA_L ___

Operation

First, take a few minutes to become familiar .with the various
elements of your Disk System. Refer to Figures 3 and 4. This is
very important. If you try to use the Computer without having a
little background information, you could damage a diskette.

5

Figure 3. The Model III Disk System with Disk Expansion Unit
(optional/extra) (see the following page for detailed
explanation).

----------1tad1elllaeli----------
PAGE 8

MODEL III DISK SYSTEM OWNERS MANUAL -------------TRS-ao@) ____________ _

1. DRIVE 0. The TRSDOS "system diskette" goes in this drive.

2. DRIVES 1, 2, and 3. These drives may contain "data
diskettes". Data diskettes are described briefly in this
chapter.

3. DRIVE SELECT LED. When a drive is being accessed, its LED
lights up.

4. DRIVE DOOR. To insert or remove a diskette, open this door.
Never remove a diskette whilP the LED is lit, or while the
diskette contains open files.

5. RESET BUTTON. When you press this button, the Computer will
attempt to load the operating system software from drive 0. The
TRSDOS diskette should be in drive O when you press this button.

6. POWER SWITCH. All drives should be EMPTY when you turn the
Computer on or off. Otherwise, the information on the diskettes
could be destroyed.

----------1tad1elllaell----------
PAGE 9

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO TM _____________ ___

Figure 4. A Diskette. (Catalogue Number 26-0305 or 26-0405)

1.STORAGE ENVELOPE. While a diskette is not in use, keep it here.

2.WRITE PROTECT NOTCH. When this is covered, the disk-drives
cannot write (change information) on the diskette. Leave the
notch uncovered if you want to save or change information on the
diskette.

3.JACKET. The diskette is permanently sealed inside this
protective jacket. Do not attempt to remove it.

4.READ/WRITE WINDOW. The disk drive accesses the diskette surface
through this window. Don't touch the diskette surface.

5.LABEL. To write on this label, use only a felt-tipped pen. Any
other writing implement might damage ti1e diskette.

----------ladaelllaeli----------

PAGE 10

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO@)-----------

Care of Diskettes

In general, handle diskettes carefully, using the same precautions you use
with tape cassettes and high-fidelity records. A small indentation, dust
particle, or scratch can render all or part of a diskette unreadable -
permanently.

• Keep the diskette in its storage envelope whenever it is not in one of the
drives.

• Do not place a diskette in the drive while you are turning the system on
or off.

• Keep diskettes away from magnetic fields (transformers, AC motors,
magnets, TVs, radios, etc.). Strong magnetic fields will erase data stored
on a diskette.

• Handle diskettes by the jacket only. Do not touch any of the exposed
surfaces. Don't try to wipe or clean the diskette surface; it scratches
easily.

• Keep diskettes out of direct sunlight and away from heat.
• A void contamination of diskettes with cigarette ashes, dust or other

particles. ' .
• Do not write directly on the diskette jacket with a hard point device such

as a ball point pen or lead pencil; use a felt tip pen only.
• Store diskettes in a vertical file folder on a shelf where they are protected

from pressure to their sides (just as phono records are stored).
• In very dusty environments, you may need to provide filtered air to the

Computer room.

Tips on Labeling Diskettes

Each diskette has a permanent label on its jacket. This label is for "vital
statistics" that will never change. For example, to help keep track of
diskettes, it's a good idea to assign a unique number to each diskette. Write
such a number on the permanent label. You might also put your name on the
diskette, and record the date when the diskette was first put into use.
Remember, use only a felt tip pen for marking.

This "permanent" label is not a good place to record the contents of the
diskette - since that will change, and you don't want to be erasing or
scratching out information from this label.

----------llad1elllaeli----------
PAGE 11

M_o_o_E_L_r_r _r _n_r_s_K_s_Y_s_T_E_M ___ TRS-BO ,r~ ______ o_w_N_E_R_s_MA_. _Nu_A_L........,

Starting the System

1. Turn all peripherals on.

2. Turn the Computer on. Wait until all disk drive motors stop.

3. Locate the TRSDOS diskette that was supplied with the Disk
System. Insert it into drive 0, with the label side facing up
and the read/write window pointing into the drive slot. See
Figure 5.

4. When the diskette is fully inserted, close the drive door.

5. Press RESET. The Computer should now load TRSDOS and begin
the start-up dialog described in the next section.

Figure 5. Inserting a Diskette.

-----------rtadaolllaeli----------

PAGE 12

MODEL III DISK SYSTEM OWNERS MANUAL
-----------TRS-BO:fi-1 ----------

If nothing happens on the display, or if the message:

Diskette?

is displayed, check the following:

Are you using a TRSDOS "system" diskette?
Is the diskette properly inserted into drive 0?
If external drives are present, are they properly
connected and turned on?

If you can't find the problem, refer to the Troubleshooting and
Maintenance chapter for further suggestions.

TRSDOS Start-Up Dialog

Whenever you reset the Model III Disk System, it loads TRSDOS
and begins the start-up dialog.

1. The TRSDOS version number and date of creation will be
displayed, followed by the amount of RAM (32K or 48K) and the
number of drives in the system.

2. TRSDOS will prompt you to enter the date in the form
MM/DD/YY. For example, 07/04/80 for July 4, 1980. Type in the
correct date and press <ENTER>. TRSDOS will not continue until
you type in the date correctly.

3. TRSDOS will prompt you to enter the time in 24-hour form
HH:MM:SS. For example, 14:45:00 for 2:45 p.m. Type in the
correct time and press <ENTER>. If you don't wish to set the
time, simply press <ENTER> at the beginning of the line. TRSDOS
will set the time to 00:00:00.

4. TRSDOS will now display the message,

DOS Ready

Whenever this is displayed, you are in the ''DOS Ready mode", a'nd
you may type in a TRSDOS command.

----------ltadaolhaell----------

PAGE 13

M_o_D_E_L_I_I_I_D_I_s_K_sY_s_T_E_M ___ TRS•BO <:® _____ o_WN_E_R_s_MA_N_u_AL ___ _

Important Disk Operations

In this section we will describe two very important operations:

l. Duplicating the TRSDOS diskette {BACKUP)
2. Initializing a data diskette {FORMAT)

All new customers should complete the TRSDOS BACKUP procedure
now: multi-drive customers should also complete the FORMAT
operation for a few diskettes. Detailed information is provided
in Chapter 9: here we will simply outline the procedures.

Making a BACKUP {Duplicate) of TRSDOS

Your first operation should be to duplicate the TRSDOS diskette
you received from Radio Shack. The TRSDOS diskette contains a
utility program called BACKUP to accomplish this. {BACKUP will
actually copy any diskette, not just a TRSDOS diskette.)

1. Locate the TRSDOS diskette and a new, blank diskette. The
TRSDOS diskette will be referred to as the "source", while the
blank one will be called the "destination", during the backup
process.

2. Start TRSDOS as explained in the previous section. DOS READY
should be displayed.

3. Type:

BACKUP <ENTER>

3. TRSDOS will now load and start the backup program. It will
ask you:

SOURCE Drive Number?

You should specify the drive which contains the original TRSDOS
diskette by typing:

.Rf <ENTER> •

4. Next TRSDOS will ask:

DESTINATION Drive Number?

-----------ladaelllaeli-----------

PAGE 14

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRs-eo@ _________ _

Now specify the drive which will be used for making the
duplicate TRSDOS.

4-A. If you have two or more drives in your system, type:

1 <ENTER>

4-B. If you have a single-drive system, type:

Z <ENTER>

5. TRSDOS will ask:

SOURCE Disk Master Password?

Type:

PASSWORD <ENTER>

(PASSWORD is the password of the supplied diskette.)

6. Now the backup process will begin.

If the destination diskette is not formatted, BACKUP will format
it before continuing. (Before any diskette can be used, it must
be initialized or "formatted"--the data regions defined and
labeled, and a table of contents or "directory" created.)

If you are using a single-drive system, TRSDOS will prompt you
to swap SOURCE and DESTINATION diskettes several times during
the formatting/backup process.

After a sucessful backup operation, TRSDOS will display the
message:

Insert SYSTEM Diskette <ENTER>

Be sure you have a TRSDOS diskette in drive O, then press
<ENTER>.

The backup is now complete. We suggest you save the original
TRSDOS and use the duplicate as your working copy. If anything

----------ladaelllaeli----------
PAGE 15

M_o_o_E_L_r_rr_o_r_s_K_s_Y_s_T_E_M ___ TRS-BO fM ______ ow_· N_E_R_s_MA_N_u_A_L_

should happen to the working copy, you can make another one from
the original.

Making a Data Diskette

This section applies to multi-drive systems only.

Drive O must always contain a TRSDOS diskette, so the Computer
can have access to the system programs stored there. By
necessity, much of the storage capacity of this diskett~ is
taken up by the system programs.

However, the other drives in the system may contain "data"
diskettes which have no system programs. All of the storage
capacity of such diskettes is available for your programs and
data.

The FORMAT utility program takes a diskette and initializes or
"formats" it. If the diskette was previously formatted, all
prior information will be lost. The resultant diskette contains
no system files and may only be used in drive 1, 2 or 3.

1. In the DOS READY mode, type:

FORMAT <ENTER>

2. TRSDOS will start the formatter program and ask you a series
of questions:

Which Drive is to be Used?

Insert a blank diskette into drive 1. Type:

1 <ENTER>

If the diskette is already formatted, TRSDOS will warn you:

Diskette contains DATA, Use or Not?

The warning is needed since formatting a diskette erases all
previous informatin from the diskette. Type N <ENTER> to cancel
the format operation; type Y <ENTER> to continue it.

-----------lladaelllaeli----------

PAGE 16

MOD.EL III DISK SYSTEM OWNERS MANUAL
-----------TRS-BOTM. ----------

Diskette Name?

(TRSDOS is the name of the supplied diskette.)

This name will serve as an internal label for the diskette. Type
in any appropriate name of one to eight letters and numbers,
starting with a letter. Press <ENTER> at the end of the name.

MASTER Password?

(PASSWORD is the password of the supplied diskette.)

The password may be from one to eight letters and numbers,
starting with a letter. Press <ENTER> at the end of the
password.

Use of the password allows diskette backups and total access to
all non-system files. Unless special protection is needed, we
suggest you use the password PASSWORD. Whatever password you
select, don't forget it!

3. TRSDOS will now format and verify the diskette.

4. Upon completion, TRSDOS will display the message:

Insert SYSTEM Disk (ENTER)

The TRSDOS diskette should already be in drive O, so simply
press <ENTER>.

The data diskette is now ready for use in either drive 1, 2 or
3.

----------lladaolhaeli----------
PAGE 17

MODEL III DISK SYSTEM o~nTERS MANUAL -------------TRS•BO<r!!l) ______ '"--~"----,,.....----

Quick Instruction for Using Disk BASIC

In this section, we'll "walk you" through the following
procedures:

1. Starting Disk BASIC
2. Running a simple program
3. Saving the program in a disk file
4. Loading it from the disk file

For programming information, see the Disk BASIC section of this
manual. Here we are showing procedures only.

Starting Disk BASIC

Under DOS Ready, type:

BASIC <ENTER>

The Computer will load and start BASIC. First it will ask two
questions. Press <ENTER> in response to each of them.

How Many Files? <ENTER>
Memory Size? <ENTER>

A heading will be displayed, followed by:

READY
>

You may now begin using Disk BASIC. For a sample programming
session, you may use the one in the Model III Manual, Section 1,
page 3/8.

After you have typed in and run this or some other program, you
are ready to save it in a disk file.

-----------lafltelluleli----------
PAGE 18

MODEL III DISK SYSTEM OWNERS MANUAL
----------TRS-BO:r~. ----------

Note: You are automatically in High Baud when you enter Disk
BASIC. If you need Low Baud, use the following command sequence:

PATCH BASIC/CMD (ADD=5202,FIND=00,CNG=FF) <ENTER>

Consequently, you will be prompted with:

Cass?

whenever you enter Disk BASIC.

You should then enter either H (High) or L (Low) to choose the
Baud you need.

You should note, however, that the system diskette has been
altered and you will be prompted never you enter Disk BASIC
(except when you enter BASIC*).

To change the system diskette back to its original state (i.e.,
automatically in High baud), simply enter the PATCH again but
reverse the FIND and CHG values.

Saving a Program

You should have a program in memory, and be in BASIC's READY
mode. Type:

SA VE "PROGRAM" <ENTER>

BASIC should now save the program in a disk file we arbitrarily
named "PROGRAM". Any other suitable -file name~ would do.

Loading a Program

For this sample session, we will load the program just saved.

First type:

NEW <ENTER>

to erase it from memory. (This is to prove that it can be
retrieved it from the disk file.)

----------ltadlOlbaeli----------

PAGE 19

M_o_D_E_L_r_r_r_D_r_s_K_s_Y_s_T_E_M ___ TRs~so (!~ ______ ow_N_E_R_s_MA_N_UA_L_

Now type!

LOAD "PROGRAM" <ENTER>

and BASIC will load the specified program.

You may now list it and run it.

For further information on using Disk BASIC, see Section 3 of
this manual.

----------1tad1elllaeli----------

PAGE 20

M_o_D_E_L_I_I_I_o_I_s_K_s_Y_s_T_EM ____ TRS-BO TM ______ ow_N_E_R_s_MA_N_u_A_L_

Troubleshooting and Maintenance

If you have problems operating your Model III Disk System,
please check the following symptoms and cures, and check the
corresponding table in your Model III Manual, Section 1, page
13/1.

If you can't solve the problem, take the unit to your local
Radio Shack. We'll have it fixed and returned to you as soon as
possible.

Symptom

Disk drive motors run
continuously when the
Computer is turned on.

Computer will not load
TRSDOS.

Error Messages

Cure

Check external drive connection
sequence. Drive 26-1164 must always
be the last external drive.

1. Make sure you have inserted the
TRSDOS diskette properly in drive 0.

2. Make sure all peripherals are
properly connected.

Look up the message in the TRSDOS
or BASIC Error Message Section. The
"cure" should be listed .

.,.__ _________________ -!--·------·--------------- ---t

Frequent disk I/O errors

t----------·----·---·-·--·--··-· ···- ·- ------··-

1. Diskette is partially erased.
Backup the diskette, then re-format
it.

2. Diskette is worn out. Use backup
copy, if available, to make a new
working copy.

3. Disk drives need cleaning or
alignment by Radio Shack service
technicians.

---------- ftad1elllaeli----------

PAGE 21

M_o_o_E_L ... rI_I_o_r_s_K_s_Y_sT_E_M ___ TRS-BO@ ______ oWN_E_R_s_MA_N_u_A_L_

Maintenance

For reliable operation, the disk drives must be kept clean and
properly aligned. These procedures should be done by Radio Shack
service technicians, according to the following schedule:

Degree of Use

Commercial data processing
environment

Occasional home use

Maintenance Interval

Every month for
medium use.

Every 8-10 months: more
often if needed.

For further instructions, see the Troubleshooting and
Maintenance section in your Model III Manual.

----------- ladtelllaeli----------
PAGE 22

M_o_o_E_L_I_r_I_o_I s_K_s_Y_s_T_E_M ____ TRS•BO <:f~, ______ o_w_N_E_R_s ___ MA_._N_u_A_L __

Notation and Abbreviations

For the sake of both clarity and brevity, we've used some
special notation and type' styles in this book.

CAPITALS and punctuation

Indicate material which must be entered exactly as it
appears. (The only punctuation symbols not entered are
ellipsis, explained below.) For example, in the line:

DUMP LISTER (START=700g,END=710H,TRA=7a~4)

every letter and character should be typed.as indicated.

lowercase italics or 'lowercase witJ1in sinqle-c1uotes'

Represent words, letters, characters or values you supply from a
set of acceptable values for a particular command. For example,
the line:·

LIST 'filename'

indicates that you can supply any valid file specification
(defined later) after LIST.

(ellipses)

Indicates that the preceding items can be repeated. For example:

ATTRIB filename (option, ..•)

indicates that several options may be repeated inside the
parenthesis.

This special symbol is used occasionally to indicate a

-----------aadaolllaeli-----------
PAGE 23

MODEL III DISK SYSTEM OWNERS MANUAL
----------TRS-BOYM ----------

blank-space character (ASCII code 32 decimal, 20 hexadecimal).

X'nnnn'

Indicates that 'nnnn' is a hexadecimal number. All other numbers
in the text of this book are in decimal form, unless otherwise
noted.

X I 7 .0'.0'.0' I

indicates the hexadecimal value 7000 (decimal 28672).

----------ltadtelllaeli----------
PAGE 24

M_o_o_E_L_r_r r_o_r_s_K_s_Y_s_T_E_M ___ TRS-BO (f~' ______ oWN_E_R_s_MA_N_u_A_L_

Specifications

Diskettes

Diskette Organization
(Formatted Diskette}

Operating Temperature

5 1/4" mini-diskettes
Radio Shack Cataloge
Number 26-305 or
26-405 (pkg of three)

Single-sided
Double-density
40 Tracks
18 Sectors/Track
256 Bytes/Sector

55 to 80 Degrees Fahrenheit
13 to 27 Degrees Celsius

-----------ltadlelllaeli----------

-----------TRS-BO'TM; _________ _

Part II TRSDOS

----------1tadte11taell----------

M_o_o_E_L_I_I_I_o_I_s_K_s_Y_s_T_E_M ___ TRS-SO ,:r~, ______ o_w_N_E_R_s_MA_N_U_A_L_

PART II -- TRSDOS

General Information

What Is TRSDOS?

TRSDOS (pronounced "TRISS-DOSS") stands for "TRS-80 Disk
Operating System". It fulfills three roles:

1. Master Program
2. Command Interpreter
3. Program Manager

As the master program, TRSDOS enables the microprocessor and its
various components to interact efficiently. The components
include:

• Random Access Memory (RAM). TRSDOS reserves space for its
own needs and allocates space for user programs •

• Disk Drives. TRSDOS interfaces with the disk hardware and
provides a file system for storing system and user data
on diskettes •

• Input/output devices. These include the keyboard,
video display, printer, and RS-232-C equipment.

TRSDOS is also a command interpreter. Whenever it displays "DOS
Ready", you may enter commands that control how the system
works. These are known as "library" commands.

In its role as program manager, TRSDOS will load and run system
or user programs. During this time, the system or user program
is in control of the Computer.

Figure 6 illustrates the relationships between these three
roles:

----------- lladaelllaell----------
PAGE 2'7

M_o_o_E_L_I_r_r_o_r_sK_s_Y_s_T_E_M ____ TRS-BO 'TM. ______ o_w_N_E_R_s_MA_N_u_A_L_

TRSDOS-MASTERPROGRAM

/ ~
Program Manager

Command
Interpreter / \

System Utility

Programs (FORMAT,

BACKUP, ect.)
Figure 6. TRSDOS Roles.

Where Does BASIC Fit In?

Language packages
(Disk BASIC,

Editor/Assembler,
ect.)

Z-80
User

Programs

If you refer to Figure 6, you'll see that Disk BASIC falls under the
"language package" category.

Disk BASIC consists of some general enhancements to Model III BASIC,
plus the disk input/output capability. It uses the Model III BASIC
{stored in ROM) whenever possible. For instance, the Model III BASIC
ROM includes all of the mathematical functions.

If you're used to the non-disk system, there's one difference you
should understand from the beginning.

In the non-disk system, BASIC is in control from the beginning.

In the disk system, however, TRSDOS is in control when you start-up.
You then have to tell TRSDOS to load and run BASIC. Only then can you
begin running a program written in BASIC.

-----------naflaelllaell----------
PAGE 22-

MODEL III DISK SYSTEM "™' OWNERS MANUAL ------------TRS-B0'~-------------

How TRSDOS Uses RAM

TRSDOS is stored on the system diskette included with your Disk
System. Each time the Computer is turned on or reset, the TRSDOS
master program is loaded into RAM so it can take charge.

TRSDOS occupies approximately 40,000 bytes of space on the diskette;
however, only a portion of that is in RAM at once. This is possible
because TRSDOS is divided into several independent "modules".

The "resident" module is in memory at all times. Its "resident"
module consists of ~input/output drivers~, tables, the ~command
interpreter~, and other essential routines.

Other modules are loaded as needed, and replaced (or "overlayed") by
still other modules when they are no longer needed. These are
referred to as "overlays".

Note: Whenever you enter a -library or utility command~, you will
hear TRSDOS accessing the system disk. It is loading an overlay
module which contains the necessary code to complete the specified
command.

For specific details on the modules and their use of RAM, see
~Technical Information~.

The Memory Map on the following page illustrates how TRSDOS utilizes
the available memory space.

-----------·ladlelbaeli----------
PAGE 29

M_o_oE_L_r_rr_o_rs_K_s_Ys_T_E_M ___ TRS-BO@) _____ o_WN_ER_s_MA_N_u_AL_

Figure 7. TRSDOS Memory Map

0

ROM

4 OOOH

TRso·os
' I 5 200H

DEBUG
BA.SIC 5 500H

I
D OS OVERLAYS OTHER

PROGQ AMS 7 OOOH

F OPMAT

8 OOOH
A I'

--~ '"-., -+----'-----J~,.:.."-' END-18 D H
"Do"' (32K) (48 K)

END (BF FFH) (FFF"F"H)

---------- lladtelllaeli----------
PAGE 30

M_o_o_E_L_1_1_1_o_r_s_K_sY_s_T_E_M ____ TRS-BO c1~1 ______ o_w_N_E_R_s....,MA_N_u_A_L __

Using TRSDOS

Entering a Command

Whenever the TRSDOS prompt,

DOS Ready

is displayed, you can type in a command, which can be no more than 63
characters in length. You must press <ENTER> to end the line. TRSDOS
will then "accept" the command.

For example, type:

CLS <ENTER>

and TRSDOS will clear the Display and the DOS Ready prompt will
reappear.

In general, your commands will require more than one word. For
example, to KILL (delete) a file named MYNAME, you have to specify
the command and the filename.

KILL MYNAME <ENTER>

tells TRSDOS to find the file named MYNAME, eliminate it from the
diskette, and release the space previously occupied by that file.

Whenever you type in a line, TRSDOS follows this procedure:

First it checks to see if what you've typed is
the name of a TRSDOS command. If it is, TRSDOS
executes it immediately ••.

•.• if what you typed is not a TRSDOS command,
then TRSDOS will check to see if it's the name
of a program file on one of the drives (such as
filename/CMD).

When searching for a file, TRSDOS looks first
through drive 0, then drive 1, etc ••.•

..• unless you include an particular drive

----------ltaflaelllaell----------

M_o_n_E_L_r_r r_n_r_s_K_s_Y_s_T_E_M ___ TRS-SO (TM,; ______ o_w_N_E_R_s_MA_N_u_A_L_

specification with the file name (described
later)--or specify the Master Command (see
Library Commands).

If TRSDOS finds a specified user file, it will
load and execute the file if it is a program
file. Otherwise, you'll get an error message.

Command Syntax

Command syntax is a command's general form (you might compare it to
the grammar or structure of an English sentence). The syntax tells
you how to put keywords (such as DIR, LIST, CREATE, etc.) together
with the necessary parameters and punctuation for each keyword.

In this book, we present general syntax inside shaded boxes, so
they're easy to recognize.

If you need help remembering the syntax form of a specific command
while you're operating TRSDOS, type in:

HELP command

'command' should be the specific Library Command you're having
trouble with. TRSDOS will give you the syntax format as well as a
brief definition of the command (see Library Commands).

-----------aactaelllaeli----------

M_o_n_E_L_r_r_r_o_r_s_K_s_Y_s_T_E_M ___ TRS-BO 'f¥ ______ o_w_N_E_R_s_MA_N_u_A_L_

Type of Commands (Syntax Forms)

No-file commands

command (options) comment

'options' is a list one or more parameters that
may be needed by the command. Some commands
have no options. The paratheses around options
must be included unless the option itself is
omitted.

'comment' is an optional file used to document the
purpose of the command-line. Comments are useful
inside automatic command input files (see BUILD
and DO commands) .

One-file commands
command filename (options) comment

'filename' is a standard TRSDOS file specification.

'options'

'comment'

See definition above.

See definition above.

Two-file commands
command filename delimiter filename (options)

comment

'filename' is a standard TRSDOS file specification

'delimiter' is one of the following:
a blank space or spaces.
a comma.
TO surrounded by blank spaces.

'options' -- See definition above.

-----------ltadaelltaell-----------
PAGE •;-,j

M_o_o_E_L_r_r_r_o_r_s_K_s_Y_s_T_E_M ___ TRS-BO -Ft ______ o_w_N_E_R_s_MA_N_uA_L_

'cormnent' -- See definition above.

----------- lladtelllaeli----------
PAGE '34

M_o_o_E_L_r_r_r_o_r_sK_s_Y_s_T_E_M ____ TRS-BO TM) ______ o_w_N_E_R_s_MA_N_U_A_L_

File Specification

The only way to store information on a diskette is to put it in
a disk file. Afterwards, that information can be retrieved via
the file name you gave the file when you created or renamed.it.
(Just keep in mind that a disk is nothing more than a file
cabinet, only smaller.)

A file specification has the general form:

filename/ext.password:d

'filename' consists of a letter followed by up
to seven optional letters or numbers.

'/ext' is an optional name-extension; 'ext'
is a sequence of up to three letters or
numbers, starting with a letter.

'.password' is an optional password;
'password' is a sequence of up to eiqht
letters or numbers, starting with a letter.

':d' is an optional disk-drive specification;
'd' is one of the digits 0,1,2,3.

Note: There can be no blank spaces inside a file
specification. TRSDOS terminates the file
specification at the first blank space.

For example:

FILEA/TXT.MANAGER:3

references the file named FILEA/TXT with the password MANAGER,
on drive 3.

The name, extension, and drive-specification all contribute to

----------ltadtelllaeli----------
PAGE 35

M_o_o_E_L_1_1_1_0_1_s_K_s_Y_s_T_E_M ___ TRS-SO(f~------o_WN_E_R_s_MA_Nu_A_L_

the uniqueness of a particular file specification. The password
does not. It simply controls access to the file.

File Names

A filename consists of a name and an optional name-extension.
For the name, you can choose any letter, followed by up to seven
additional numbers or letters. To use a name extension, start
with a diagonal slash/ and add no more than three numbers or
letters; however, the first character must be a letter.

For example:

MODEL3/TXT
NAMES/Al2
TEST

INVNTORY
AUGUST/Al5
TESTl

DATAll/BAS
WAREHOUS
TESTl/A

are all valid and distinct filenames.

Although name-extensions are optional, they are useful for
identifying what type of data is in the file. For example, you
might want to use the following set of extensions:

/BAS
/TXT
/CMD
/REL

/DAT

for BASIC program
for ASCII text
for machine-lanuage Command file
for a Relocatable machine-language
program
for data

One advantage of using extensions is that you can tell by just
looking at the directory what kind of program a specific file
is.

Another advantage is that TRSDOS can recognize certain
extensions as having a certain function. For example, if a file
has the extension /CMD, then TRSDOS will load and attempt to
execute that file when you type:

'filename' <ENTER>

omitting the extension /CMD.

PAGE 3£

M_o_o_E_L_I I_r_o_I_s_K_s_Y_s_T_E_M ___ TRS-BO fi.1; ______ o_WN_E_R_s_MA_N_u_A_L_

Drive Specification

If you give TRSDOS a command such as:

KILL TEST/A

TRSDOS will search for the file TEST/A first in drive O, then in
drive 1, 2, and finally 3 until it finds the file.

Anytime you omit a drive-specification, TRSDOS will follow this
sequence.

It is possible to tell TRSDOS exactly which drive you want to
use by specifying the drive. A drive specification consists of a
colon followed by one of the digits 0,1,2, or 3,
corresponding to one of the four drives you might be using.

For example:

KILL TEST/A:3

tells TRSDOS to look for and delete the file TEST/A on drive 3
only.

Anytime TRSDOS has to Open a file (e.g., to List it for you), it
will follow the same lookup sequence. When TRSDOS has to write a
file, it will skip over any WP as well as any notch-protected
diskettes.

Password

You can protect a file from unauthorized access and use by
assigning passwords to the file. That way, a person cannot gain
access to a file simply by referring to the filename--he must
also use the appropriate password for that file.

----------ftadaelllaeli----------
PAGE 37

M_o_o_E_L_r_r_r_o_r_s_K_s_Y_sT_E_M ___ TRS-BO@ ______ OWN_E_R_s_MA_N_u_AL __

It's important to realize that every file has a password, even
if you didn't specify it when the file was created. In such
instances, the password becomes eight blank spaces.
In this case, the file becomes unprotected--anyone can gain
total access simply by referring to the filename.

TRSDOS allows you to assign two passwords to a file:

an "Update word", which grants the user
total access to the information

an "Access word", which grants the user
limited access to the information (see
ATTRIB)

When you create a file, the Update and Access words become the
password you specify. You can change them later with the PROT or
ATTRIB commands.

A password consists of a period followed by one to eight
letters or numbers. If you do not assign a password to a file,
TRSDOS uses a default password of eight blanks.

For example, suppose you have a file named SECRET/BAS. and the
file has MYNAME as an update and access word. Then the command:

KILL SECRETS/BAS

will not cause the file to be KILLed. You must include the
password MYNAME in the file specification.

Suppose a file is named DOMAIN/BAS and has blanks for the
password. Then the command:

KILL DOMAIN/BAS.GUESS

will not be obeyed, since GUESS is not the password.

-----------lladtelllaeli-----------
PAGE 3P.

M_o_D_E_L_r_r_r_D_r_s_K_s_Y_s_T_E_M ___ TRS-BO tfi.1) ______ o_WN_E_R_s_MA_N_U_AL_· _

A Few Important Definitions

System vs Data Diskettes

Throughout this book, we'll refer to two distinct kinds of
diskettes--distinct, that is, in terms of the information they
contain, not in the way they look.

The first of these is called the System Diskette. The TRSDOS
disk which you use in drive O is such a disk.

The System Disk contains the master program and operating system
that enables your Computer to do the job you want it to do.

A Systems Diskette must always be used in drive 0.

A Data Diskette, on the other hand, contains the data or
programs you have organized and saved.

Data (or Systems) diskettes can be used in drives 1, 2, or 3.

Master Passwords

Each diskette is initially assigned a Master Password during
FORMAT or BACKUP. (Your Master Password for TRSDOS is PASSWORD.)

The Master Password allows you to gain access to the information
stored on the disk just as the file password allows you to
access a particular file on the disk.

If you know a disk's Master Password, it's possible to change
the password (see PROT).

-----------ltadtelllaeli----------

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO'.TM, __________ _

System File vs User File

TRSDOS makes use of two types of files--system and user
files. (In general, a file is an organized collection of
information.)

System files are those files used by TRSDOS and con
tained on the System diskette.

User files, however, are those files which you, the
user, have organized and saved. These files may be on a data
diskette or you may save them on a system diskette, if
there is space.

----------- lladae/llaell-----------
Page lrn

M_o_o_E_L_r_r_r_o_r_s_K_s_Ys_T_E_M ___ TRS-BO@) ______ o_WN_E_R_s __ MA N_u_A_L_

TRSDOS Liltrary Commands

----------ladaelllaeli----------

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS·BO(fi.l) _________ _

APPEND
Append files

APPEND source-file destination-file

'source-file' is the specification for the
file which is to be appended (added) to the second
file.

'destination-file' is the specification for the
file which is receive the appendage (addition)

APPEND copies the contents of the source-file onto the end of
destination-file. The source-file is unaffected, while the
destination-file is extended to include the source-file.

Note: The record lengths must match. See DIR for more
information on record lengths.

Examples

APPEND WORDFILE/C WORDFILE/D

A copy of WORDFILE/C is appended to WORDFILE/D.

APPEND REGIONl/DAT TOTAL/DAT.GUESS

A copy of REGIONl/DAT is appended to TOTAL/DA'r, which is
protected with the password GUESS.

Sample Uses

Suppose you have two data files, PAYROLL/A and PAYROLL/B.

----------ltadtelllaeli----------
PAGE 41

M_o_o_E_L_r_r_r_D_r_s_x_s_Y_s_T_E_M ___ TRS-eo@ ______ OWN __ E_R_s_. _MA_N_uAL_ _

PAYROLL/A

Atkins, W.R.
Baker, J.B. • •••••••••••••
Chambers, C.P ••••••••••••
Dodson, M. W. • ••••••••••••
Kickamon, T.Y ••••••••••••

PAYROLL/B

Lewis, G. E. • •••••••••••••••
Miller, L.O.
Peterson, B •••••••••••••••••
Rodriguez, F. • •••••••••••••

You can combine the two files with the commmand:

APPEND PAYROLL/B PAYROLL/A

PAYROLL/A will now look like this:

Atkins, W.R.
Baker , J, B. • •••••••••••••••••••••
Chambers, C. P. • ••••••••••••••••••
Dodson, M. W. • ••••••••••••••••••••
Kickamon, T. Y. • ••••••••••••••••••
Lewis , G. E. • •••••••••••••••••••••
Miller, L.O •••••••••..•••••••••••••
Peterson, B ••••••••••••••••••••••
Rodriguez, F ••••••.•••••••••••••••

PAYROLL/B will be unaffected.

-----------lladaellaaeli----------
PAGE 42

M_o_D_E_L_1_1_1_· _o_r_s_K_s_Y_s T_E_M ___ TRS .. BO ,?_r;., ______ o_WN_E ~R_s_~ M ... A_N_U_A_I_, _

ATTRIB
Change a File's Password

ATTRIB file (visibility,ACC=name,UPD=name,PROT=level)

'file' is the file ifi on.

'visibility' must be I or N. Tells TRSDOS
whether the file is Invisible (I) or Non nvisible (N)

(see DIR). If omitted, visi lity is unchanged.

1 ACC=name 1 •rel 'rRSDOS the access
word. If omitted, the access word is unchanged. If
ACC=, is used, the update word is set to blanks.

1 UPD=name' Tells TRSDOS the update
word. If omitted, the update word is unchanged. If
UPD=, is used, the update word is set to blanks.

'PROT=level' Tel the prott~cti on
is unchanged. level for access. If omitted,

Level

FULL
KILL

RENAME
WRI'fE
READ
EXEC

Degree
word

access gran by access

Full access, no protection
Kill, rename, read, execute, and

(gives total access, i.e.,
t protected) .

Rename, read, execute, and write.
Read, execute, and write.
Read and execute.
Execute only (any attempt to press
<BREAK> I LIS'r, LLIST, CSAVE, etc.,
will erase program from memory).

Note: Each level allows access to itself plus all

---------lladaelhaeli---------

PAGE 4·;1,

M_o_o_EL_r_r_r_o_r_s_K_sY_s_T_E_M ___ TRS-BO :fid. ______ ow_N_E_R_s ____ MA_N_u_A_L_

lower levels.

ATTRIB lets you change the passwords to an existing file or
makes the file invisible or non-invisible. Passwords are
initially assigned when the file is created. At that time, the
update and access words are set to the same value (either the
password you specified or a blank password).

Examples

ATTRIB DATAFILE (I,ACC=JULY14,UPD=MOUSE,PROT=READ)

Makes the file invisible, sets the access password to JULY14 and
the update password to MOUSE. Use of the access word will allow
only reading and executing the file.

ATTRIB PAYROLL/BAS.SECRET(N,ACC=,)

Sets the access word to blanks. The file is made non-invisible
and the protection level assigned to the access word is left
unchanged.

ATTRIB OLD/DAT.APPLES(UPD=,)

Sets the update word to blanks.

ATTRIB PAYROLL/BAS.PW(PROT=EXEC)

Leaves the access and update words unchanged, but changes the
level of access.

Sample Uses

Suppose you have a data file, PAYROLL, and you want an employee
to use the file in preparing paychecks. You want the employee to
be able to read the file but not to change it. Then use a
command like:

ATTRIB PAYROLL(I,ACC=PAYDAY,UPD=AVOCADO,PROT=READ)

--------- ladtel'llaeli---------

PAGE 44

M_o_o_E_L_1_1_1 _0_1_s_K_s_Y_s_T_E_M ___ TRS-BO «~: ______ ow_NE_'R_s_MA_N_u_A_L_

Now tell the clerk to use the password PAYDAY (which allows read
only); while only you know the password, AVOCADO, which grants
total access to the file.

Note: A level of READ or above is required to load and run a
BASIC program.

----------IMIIO/llaell----------

MODEL III DIS.K SYSTEM OWNERS MANUAL
-----------TRS .. B0'5i.11

AtJ'PO
Automatic Command after System Start-up

AUTO command-line

'corrnnand-·line' Gives 'I'RSDOS a command or
the.name of a.n executable program file created by
BUILD.

if 'command-line' is given, the command will be
executed on RESET/POWER-UP

if: 1 comma.nd-line' is omitted, the previous AUTO
command is erased from the diskette.

This command lets you provide a command to be executed whenever
'rRSDOS is started (power-up or reset}. You can use it to get a
desired program running without any operator action required,
except typing in the date and time.

When you enter an AUTO command, TRSDOS writes command-line into
its start-up procedure. TRSDOS does not check for valid
commands; if the command line contains an error, it will be
detected the next ti.me the System is started up.

The AUTO command-line is displayed after it is set to serve as
an acknowledgement.

Examples

AUTO DIR (SYS)

Tells TRSDOS to execute the command DIR (SYS) after the start-up
procedure. Each time the System is reset or powered up, it will
automatically execute that command after you enter the date and
time.

AUTO BASIC

Tells TRSDOS to load and execute BASIC each time the System is

-----------ladao/llaell----------
PAGE 4 (,

MODEL III DISK SYSTEM - OWNERS MANUAL ----------TRS-BO(T __ M ____ - -----....-.. _,....,... __ _ -...... ~!iiltn&W«"lllilltW'l!tWrttr ¥il'1l"l"III' rzrrr l::!l!'!!lll'

started up.

AUTO FORMS (WID'rH=8.8')

Tells TRSDOS to reset the printer width parameter each time the
System is started up.

AU'I'O PAYROLL/CMD

Tells TRSDOS to load and execute PAYROLL/CMD (must be a.
machine-language program) after each System start-up.

AUTO DO STARTER

Tells TRSDOS to take automatic key-ins from the file named
STARTER after each System start-up. See BUILD and DO.

To Erase an AU'l'O Command

Type:

AUTO ENTER

'l'his tells TRSDOS to erase any automatic corn.mand.
The co:w.mand will he deleted the next time you Power-up
or RESET the System.

The acknowledgement:

AU'rO = • '

is displayed after an erasure.

Important Note: To Override an AUTO •••

You can by-pass any automatic corn:ma.nd by holdinq down
{ENTEP)while pressing RESET. You must conti.nue hol<linq
down <EN'J'ER) unti 1 you are prompted for the dab::; during
the initialization process.

--------------- nad1e lllaell .., __ , Jli ______ , -• """Hl""'""""'a,11...,!l@iillllt-· il'..,.?Wl-ii ib-.lll_"1 ___ .,

PAGE 4 7

M_o_o_E_L_I_I_r_o_I_s_K_sY_s_T_E_M ___ TRS-BO@) ______ o_WN_E_R_s......,MA __ N_U_AL ___

BUILD
Create an Automatic Command Input File

BUILD file

'file' is a file specification
which cannot include an extension

This command lets you create an automatic command input file
which can be executed via the DO command. The file must contain
data that would normally be typed in from the keyboard to the
TRSDOS READY mode.

BUILD files are intended for passing command lines to TRSDOS
just as if they'd been typed in at the TRSDOS READY level.

BUILDing New Files

When the file you specify does not exist, BUILD creates the file
and immediately prompts you to begin inserting lines. Each time
you complete a line, press <ENTER>.

While typing in a line, you can use <SHIFT> < +- > for erasures
and corrections.

To end the BUILD file, simply press <BREAK>.

First type:

BUILD 'filename'

You will then be prompted with the message:

TYPE IN UP TO 63 CHARACTERS
PRESS <BREAK> TO EXIT

You then type in no more than 63 characters. To exit from your
BUILD command, you must then press <BREAK>. You may enter as
many lines as necessary.

----------ladlelllaeli----------
PAGE 48

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO(TM, __________ _

For example, here's a hypothetical BUILD-file that
initializes the serial interface and the printer
driver:

SETCOM (BAUD=12~0,WAIT)
FORMS (WIDTH=8.0'")
PAUSE SERIAL INTERFACE & PRINTER INITIALIZED

----------lladaolllcleli----------
PAGE

M_o_n_E_L_r_r_r _r_n_· s_K_s_v._s_T_E_M ______ .,, TRs .. ao (f"l. ·--... _____ o_WN_E_3 R_S __ M_A_N_U_A L_
!Ui.lJI f l M It ~I- 11·1•lloli!liDlllllll lMii!Ni"i1 ,. - • -~ -

CLEAR
Clear User Memory

CLEAR (STAHT=aaaa,END=bbbb,MEM::o:cccc)

START=' aaaa' Tel.ls ·rRSDOS where to start
clearing user memory. 1 aaaa 1 is a four-digit
hexadecimal number from 6000 to the end of user
memory. If this option is omitted, 6000 is used. If
this option is used, END='bbbb' must also be used.

END='bbbb' Tells TRSDOS to clear user
memory to a specified end. 1 bbbb 1 is a four-digit
hexadecimal number no less than the START number and
no greater than the top of memory. If this option is
used, START='aaaa 1 must also be used.

MEM='cccc'
address. 1 cccc 1 is
from Oto FFPE'. If
protect address is

Sets the memory protect
a four-digit h~~xadecimal number
this option is omitted, the memory
reset to end of user RAM.

If all options are omitted, all available RAM memory
is cleared and reset to end of memory and the Display
is cleared and all I/O drivers are reset (see Memory
Requirement of TRSDOS).

rr'his command gets you off to a fresh start.

Depending on the options you select, this command will:

Zero user memory {loads binary zero into each
memory address above 6000)
Clears the Display
Un-protect all memory
Reset the stack (This is done everytime the
prompt appears.)

(SE~EJ Memory Requirements of 1'RSDOS for more information on
mem---protect.)

-----------lad1e/haell----------
PAGE ~50

M_o_o_E_L_r_r_ r· _o_r_s_K_s_Y s_T_E_M ___ TRS-BO 'TM\ ______ ow_N_E_R_s_MA_N_u_A_L_

Example

CLEAR (START=98~8,END=~A08~)

Note: Hexadecimal numbers which begin with a letter must be
prefaced by zero. (See above example)

Sample Use

CLEAR (MEM=7~~8)

----------1tad1e/llaell----------

M_o_o_E_L_r_rr_· _o_r_s_K_s_Y_s_T_E_M ___ TRS-BO r_~- ______ o_WN_E_R_s_MA_N_o_A_L_

CLOCK
Turn On Clock-Display

CLOCK {switch)
'switch' Gives TRSDOS one of two options, ON or

OFF.

If option is omitted, TRSDOS uses ON.

This command controls the real-time clock display in the upper
right corner of the Video Display. When it is on, the 24-hour
time will be displayed and updated once each second, regardless
of what program is executing.

Clock-display is OFF at TRSDOS start-up.

Note: The real-time clock is always running, regardless of
whether the clock display is on or not except during cassette
and disk I/0 •.

Examples

CLOCK

Turns on the clock-display.

CLOCK {OFF)

Turns clock-display off.

See TIME and DATE

----------nadaolllclell----------
PAGE 52

M_o_o_E_L_r_r_r_o_r_s_K_s_Y_sT_EM ____ TRS-SO ,rrv1_, ______ o_w_N E_R_s_MA_N_u_A_L_

CLS
Clear the Screen

CLS

This command clears the Display. Use it to erase information you
don't want others to see; for example, file specifications which
include passwords.

Example

CLS

Sample Use

CREATE PERSONNEL/BAS.SECURE (LRL=255)
CLS

----------ltaflae/haeli----------
PAGE r:,·;;

M_o_o_E_L_I_r_I_o_r_s_K_s_Ys_T_E_M ___ TRS-BO@) _____ OWN __ E_R_s_MA_N_u_AL __

COPY
Copy a File

COPY source-file destination-file
or

COPY source-file :d
or

COPY /EXT:d :d

'source-file'
is to be copied

'destination-file'
destination file. Can
TRSDOS will default to
original file.

is the name of the file which

is the name of the
be a drive-number, :d. If so,
the name extension of the

':d' is the drive of the copy. If
omitted, TRSDOS will search through all available
drives.

'/EXT:d :d' is the name of the
file-extension as well as source- /destination-drives.

This command copies source-file into the new file defined by
destination-file. This allows you to copy a file from one disk
to another, using a single drive if necessary.

Examples

COPY OLDFILE/BAS NEWFILE/BAS

Copies OLDFILE/BAS into a new file name NEWFILE/BAS. TRSDOS will
search through all drives for OLDFILE/BAS, and will copy it onto
the first disk which is not write-protected.

COPY NAMEFILE/TXT :1

T_h_i_s_c_o_mma __ n_d_s_g._e_c_i_f_i_e_s ___ lfaaWte,... NAMEFILE/TXT to

PAGE 54

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRs-ao@ __________ _

another disk.

COPY FILE/EXT:..0' :1

This command copies FILE/EXT to disk 1.

Sample Use

Whenever a file is updated, use COPY to make a backup file on
another disk. You can also use COPY to restructure a file for
faster access. Be sure the destination disk is already less
segmented than the source disk; otherwise the new file could be
more segmented than the old one. (See FREE for information on
file segmentation.)

To rename a file on the same disk, use RENAME, not COPY.

-----------bdaelllaeli----------
PAGE 55

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRs .. ao'.f~)----------

CREATE
Create a Preallocated File

CREATE filename {LRL=aaa,REC=bbb)

'filename' is the file specification
LRL='aaa' is the Logical Record Length. 'aaa' is

a decimal number between zero and 255. If omitted, 256
is assumed. LRL=is an option and is not necessary for
file creation.

REC='bbb' is the number of Records to allow for.
'bbb' is a number between zero and 255 (or whatever
the disk has space for). If omitted, no records are
allocated. REC= is an option.

This command lets you create a file and pre-allocte (set aside)
space for its future contents. This is different from the
default (normal) TRSDOS procedure in which space is allocated to
a file dynamically, i.e., as necessary when data is written into
the file.

Note: With pre-allocated files, TRSDOS will allocate extra space
when you exceed the pre-allocated amount during a write
operation.

You may want to use CREATE to prepare a file which will contain
a known amount of data. This will usually speed up file write
during the write operations. File reading will also be faster,
since pre-allocated files are less segmented or dispersed on the
disk--requiring less motion of the read/write mechanism to
locate the records.

Examples

CREATE DATAFILE/BAS (REC=10g, LRL=255)

Creates a file named DATAFILE/BAS, and allocates space for 300
256-byte records.

CREATE NAMES/TXT. IRIS (LRL=3.0' ,REC=S.0)

-----------ltadNtlhaell----------
PAGE 56

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-80'1"'; _________ _

Creates a file named NAMES/TXT protected by the password IRIS.
The file will be large enough to contain 50 records, each 30
bytes long.

CREATE PAYROLL/BAS

Creates a file named PAYROLL/BAS with all of the 255-byte
records available on the disk.

Sample Use

Suppose you are going to store personnel information on no more
than 250 employees. Each data record would look like this:

Name (Up to 25 letters)
Social Security Number (11 characters)
Job Description (Up to 92 characters)

Then your records would need to be 25+11+92=128 bytes long.

You could create an appropriate file with this command:

CREATE PERSONNL/TXT (REC=25.0',LRL=l28)

Once created, this pre-allocated file would allow faster writing
than would a dynamically allocated file, since TRSDOS won't have
to stop writing periodically to allocate more space (unless you
exceed the pre-allocated amount).

----------ladaolbaeli----------
PAGE 57

MODEL III DISK SYSTEM OWNERS MANUAL ------------TRS-eo@ _________;.111111111111 _

DATE
Reset or Get Today's Date

DATE mm/dd/yy

'mm/dd/yy' is the specification for the
month (mm), day (dd) and year (yy).

Each must be a two-digit decimal number between the
following ranges:

mm 01 - 12
dd 00 - 31
yy 00 - 99

The specifications are an option; however, if one
specification is used, they all must be used.

If option is omitted, TRSDOS displays the current
date.

If option is given, TRSDOS resets the date.

This command lets you reset the date or display the date.

You initially set the date when TRSDOS is started up. After
that, TRSDOS updates the date automatically, using its built-in
calendar. You can enter any two-digit year after 1900.

When you request the date, TRSDOS displays it in the format:

a1;2s/a6

for July 25, 1980.

Examples

DATE

Displays the current date.

___ D_A_T_E..,..8_7'-/l_a_;_a_IK _____ ladte lllaeli-----------

PAGE 58

M_o_o_E_L_r_r_r _o_r_s_K_s_Y_s_T_E_M ___ TRS-BO T~, ______ oWN_E_R_s_MA_N_u_AL __

Resets the date to July 18, 1980.

----------ltattaelllaell----------
PAGE '>o

M_o_o_E_L_r_r_r_o_r_s_K_sy_· _sT_E_M ___ TRS-BO if~, ______ oWN_E_R_s_MA_N_u_A_L_

DEBUG
Start Debug Monitor

DEBUG
Whenever the command is entered, monitor is ON.

Q turns monitor OFF.

This command sets up the debug monitor, which allows you to
enter, test, and debug machine-language programs.

The debug monitor is designed to allow you to correct problems
in machine-language programs.

Its features include:

Full- or half-screen displays of memory contents

Commands for modifications to RAM and register contents

Single-step execution of programs

Breakpoint interruption of program execution

Transfer of control (Jump)

DEBUG uses the memory area from 4EOO to 54FF (see TRSDOS MEMORY
MAP).

(DEBUG can only by used on programs in the user area X'5500' to
TOP).

Examples

DEBUG

Turns DEBUG ON.

--.:.0-------- lladaelhaeli----------

PAGE 60

M_o_D_E_L_I_II_D_I_s_K_s_Y_s_T_E_M ___ TRS-Bo@ ______ o_WN_E_R_s_MA_N_uA_L_

Turns DEBUG OFF and un-protects memory.

Command Description

Debug commands are usually entered by pressing a single key.
Unlike conventional TRSDOS commands, you do not have to press
<ENTER> after the command has been typed in. Either a prompt
will immediately be displayed or DEBUG will execute the
operation without further instruction.

In some cases, you will have to enter a specific hexadecimal
address (see Rand J commands, for instance). Instead of
pressing <ENTER> after the address is typed in, you will have
to press <SPACE-BAR>.

Once you have entered the the DEBUG program, you may use any of
the following special commands:

D (Display Memory Contents)

Press <D> to display the contents of memory. TRSDOS will respond
with the prompt:

D ADDRESS =

You should type in the hexadecimal address of the memory
location you wish to see.

The display will be either half- or full-screen, depending on
the format you are currently using (see below).

-----------latlaellaeli----------
PAGE 61

M_o_D_E_L_r_rr_D_r_s_K_s_Y_sT_E_M ___ TRS-BO@) ______ o_WN_ER_s_MA_N_u_AL_

X. (Half-screen Display)

Press <X> to put the Display in the half-screen format. A
128-byte block of memory will be displayed starting with the
next lowest address which is a factor of 16.

The following is a typical half-screen format.

RAM Display - Shows
Hex Contents of Each Byte

ASCII Display - Period (.) Indicates
a Non-Displayable Character

Start Address
of One 16-Byte
"row" of RAM

~5 '."1 () I)

~'i":i 1. t}

~i'.'5?0
·."i :':;::in
f.:: !j-<f tJ
'.'.'i'.:'i~5 Cl
'.:'j':.i6 0
~:i:i?O

FEOA
?':36E:
2E'.30
"f'.~ I) (J

0 0 (! 0
OO•i'+
9E: 1to
FFFF

DBD6 O?C9 1C1.F
lO'."i'.'.j 7"t6S:' 6C69
ODO f-:i 46bQ 6C6'.:.i
'.3CO 0 0001) 0000
()!JOO 001)0 FFOO
ns't-t O?tJ6 FFFF
CIYH:: FFFF FFFF
FFFF FFFF FFFF

4'-:·6'."i 6':>70:· ,.. • ..> 67?0 't't69
74?9 ZO::'i6 6~?? ?0:3:t.
7:3?0 6:=.=it.i:3 ~JA:? 0 0300
0 0 0 (J 0 0 0 0 0 0 0 0 0000
OOFF 0 0 '.:) :':) 448'.':i oc;-::i1
FFFF FFFF lD'-lO FfFT
FFFF FFFF FF1::F FFFF
FFFF FFFF FFFF F1::FF

• • • • • • • • l)ebuq Di
!::V.. Ut1]. j_ t,,~ Vf:1r 1
+ o. ❖ F :i. lf:")<:;p ec t • +

C • < • • ❖ • • • • • • • • • •
• • + • • • • • • • .uo • • o
,DuD. • • • • • • • , .. (!? , •
•ta' ~(. • • • • • • • • • • •
• • • • • • • • • + • • • • • •

P~ F5 3F 00 3? F0 44 Fl C9 E5 CO 30 11 C2 09 44 E3 •

1:)F HC
pL. __ ,_ •,·1 OC

f.-1F ' PC' DE' HL I IX IY SP PC 0602 FFFf: FFFF FFFF 40:J.D FDFF 't O ~)f.: 4BCB •

/
Op-Code Instructions at the "PC" Address

----------ladlelbaeli----------

PAGE (2

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO'ri{. __________ _

S (Full-screen Display)

By pressing <S>, the contents of a 256-byte block of memory are
displayed starting with the next lowest address which is a
factor of 256.

Note: The last 16 bytes on the Display will be overlaid by any
command-line typed in after the Display is on the Video.

M (Modify RAM)

Press <M> to change the display format to the disk utility
display format (see the F command). TRSDOS will respond with the
prompt:

M ADDRESS=

You should type in the four-digit hexadecimal address of the
memory location you wish to modify, followed by a blank space
(anything other than a space will abort the command).

The display will change to the memory edit format. The cursor
will appear as a blinking character at the specified location.

There are two ways to exit the Modify mode. Pressing <ENTER>
will allow TRSDOS to accept all changes made. Pressing <BREAK>
will restore memory to its original contents.

----------- ltadtelllaeli----------

PAGE r::✓-:

M_o_o_E_1_r_r._r _o_r_s_K_s_Y_s_·r_E_M ___ TRS-BO f~, ______ o_w_N_E_R_s_MA_N_u_A_L_

R (Change Register Contents)

Type:

R'aa,bbbb' <SPACE-BAR>

where 'aa' is the name of the register pairs AF,
BC, DE, HC, or PC.

where 'bbbb' is the four-digit hexadecimal
value which will be the new register content
If fewer than four digits are typed in before
pressing <SPACE-BAR>, leading zeros are
assumed.

I (Single-step)

Pressing <I> will allow the Computer to execute a single Z-80
instruction. The display will then be updated.

The instruction of the memory contents referenced by the program
counter is executed. The program counter is increased by the
appropriate value, and the control is returned to DEBUG.

DEBUG will not, however, step through a call or jump into a ROM
address. Furthermore, breakpoints cannot be set in ROM.

C (Single-step)

If the contents at the memory location is a call instruction and
you wish to complete the entire CALL/RET sequence, press <C>.
The call is then executed and control is returned to DEBUG when
the subroutine returns. Otherwise, this instruction acts just
like the I command.

Just as with the I command, you will not be able to step through
a call or jump into a ROM address; neither can you set
breakpoints in ROM.

---------- lad1elhaeli----------

PAGE 64

M_o_o_E_L_I_II_o_I_s_K_s_Y_s_T_E_M ___ TRS-SOrf~, ______ ow_N_E_R_s_MA_N_u_A_L_

U (Update)

Pressing <U> causes the Display to be updated repeatedly.

Press any key to exit this mode.

; (Increment Display Address)

If the Display is half-screen, the first location shown is
incremented by 16 when you press<;>. If the full-screen format
is displayed, the starting address will be incremented by 256.

- (Decrement Display Address)

If the Display is half-screen, the first location is decremented
by 16 when you press<->. If the full-screen format is
displayed, the starting address will be decremented by 256.

----------ladaelhaeli----------

PAGE 6 1)

M_o_D_E_L_r_r_r_D_r_s_K_s_Y_s_T_E_M ___ TRS-eo@ ______ o_WN_E_R_s_MA_N_u_AL...,._

J {Jump Transfer of Control)

Press J to transfer control from one location to another.

Debug will respond with the prompt:

J ADDRESS?=

You should type in two sets of hexadecimal numbers in the
following format:

J ADDRESS?= 'aaaa,bbbb'

where 'aaaa' is the four-digit
hexadecimal number which specifies
the address where the execution
begins. If this number is not
specified, control will be transferred
to the location referenced by the program
counter.

where 'bbbb' is the four-digit hexadecimal
number which specifies the point where a
breakpoint is desired. The contents of the
specified location are set to a
hexadecimal 'F7'. When execution reaches
this point, control is returned to DEBUG.

When the breakpoint is set in the JUMP command, the contents of
the location specified are set to a hexadecimal 'F7'. When
execution reaches this location, control is returned to DEBUG
and the breakpoint is removed.

----------IIINllelllcleli----------
PAGE 66

M_o_D_E_L_I_I_r_D_I_s_K_sY_s_T_E_M ____ TRS-BO (f~; ______ o_WN_E_R_s_MA_N_u_A_L_

Q (Quit)

Pressing <Q> will turn DEBUG off and return control to TRSDOS.

F (File Utility)

Fis a special DEBUG command which enables you to load the
contents of a disk file into memory and then change the
contents.

When you press <F>, DEBUG will respond with the prompt:

Filespec:

and you should enter the name of the file which needs to be
displayed.

If the file is not found, an error message will be displayed and
the prompt will reappear.

If the file is loaded, a full-screen display of the file
contents will appear.

The following page gives a typical display.

----------ltadlelllaeli----------

PAGE Cl

MODEL III DISK SYSTEM ----------- TRS-BO T~J _____ o_w_N_E_R;;..s ...;;;MA.;;.;;.;;.N;.;;;,U,;,;,A;;;.L_

Memory
Content

Information

Two-Byte Value

\
llU JOU: FF52 28«C 4P54 53~C 480A 4653 3848 5446
ji!i\)110'.'. '5'.:?l{C ')!::''-ti':, •Jt•tt: :.,34H ·'t6·'tl !::i'.i"i'C 1..}J=;-'l6 •t:!:'.iJ
0 U O 1 ? 0 t if C 3 H "t \;' ·4 l: 4 l tt C 4 3 t.f :;'. "* q 11 r;, 0 (l Ff O O O O O O U 0
o o o 1 3 o :: o \1 o n o o o o o o o ii o o o c e n u o o o o n o n o o o o o o
OUOl~tJX rFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0 0 0 '! ".', 0 ; FF FF FF F" F FF FF F' FF F f' r· FF FF FF FF FF !"' !--' !-- 1--
0 0 0 t 6 C': FF'FF FFF F f FF F 1-:FT i--- F 1::-rF FFFF FFF!·; FFFF
OU0170t FF~F FFFF FFFF FFFF FFFF FFFF FFFF FFF~

0000 0000 0000 0000 0000 ouuo
nooo 0000 onoo onoo oono 0000
ooou 0000 0000 0000 0000 0000
oquo 0000 noon ocoo ooou 0000
FFFF FFFF FFFF FFFF FFFF FFF~
FFFF FFFr ~FFF FFFF FFFF FFFF

000:IB()! 2000 tluOO
OOUJ<;'(}t OO!J(' onnc
000·1,;n; onoo 01.1eu
!lCOJbOt OU!lD tJOOO
nno1c11~ FFFF FFFf;
eoo,ou; fFFF FFFF
00(1' .. FFFF n-Fr
!JOO:tf'O;. FFFF FFFF

FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF

Byte offset within the Record.

Drive# Record # under examination.

ASCII Translation

l
.s:LKTSLKJFStK'rF
FL!<F i'H.S:,· :::· h\31...hF f.~S

♦ ~ 9 ❖ t ~ ❖ ❖ ❖ t + t ♦ t ❖ t

❖ • ❖ ♦ f + • f ~ t t + 4 + f f

• + + ❖ ~ + f ❖ • • + + • i • •

❖ + + t • • ~ • • • ❖ t • • •

♦ 0 • ❖ t O t O ♦ ♦ ~ ♦ f ~ • f

• • t • • t t ~ • t + • • • t •

• t ❖ • • • • • + • ~ • t • • •

0 t ❖ + + ❖ • ~ ♦ ~ ❖ t t + + +

----------ladtelllaeli----------
PAGE 68

M_o_o_E_L_r_r_r_o_r_s_K_sY_s_T_E_M ____ TRS-BO@ ______ o_WN_E_R_s_. _MA_N_U_A_L_

In this display mode, control values are not translated into
periods, so all character values will appear in the right-hand
column.

The display control commands are the same as in the normal
display mode (i.e., <;> for forward,<-> for backward, etc.). To
modify the contents of a file, press <M>.

The cursor will appear as a blinking character at the location
of the first byte. The arrow keys (<t>, <+>,<-+>,and<"'"">),
will control the cursor's position.

To complete the operation, press <ENTER>. To abort the
modification, press (BREAK>.

To load another file, press <BREAK> and the prompt will return.
To exit, press <BREAK> when the prompt is displayed.

Once the utility has been started, control will not return to
DEBUG. When you exit from the prompt, control returns to TRSDOS.

---------- ladtelllaeli------------

PAGE 69

M_o_D_E_L_II_I_D_I_s_K_s_Y_s_T_E_M ___ TRS•BOcr~ ______ OWN __ E_R_s_MA_Nu_AL __

DIR
List the Diskette Directory

DIR :drive-specification (INV,SYS,PRT)

':drive-specification' is the desired drive
directory. If omitted, drive O is assumed.

'INV' lists the invisible user
files. If omitted, non-invisible user files are
listed.

'SYS' lists system and user files.
If omitted, only non-invisible user files are listed.

'PRT' lists the directory to the
Printer. If omitted, the directory will be listed on
the Video Display only.

If no option is given, TRSDOS lists non-invisible user
files in drive 0.

This command gives you information about a disk and the files it
contains.

To pause the listing, press<@>. To continue, press <ENTER>. To
terminate the listing, press <BREAK>.

Examples

DIR

Displays the directory of non-invisible user files in drive 0.

DIR :1 (PRT)

Lists the directory of the user files in drive 1 to the Printer.

-----------lladaelllaell-----------

PAGE 70

M_o_D_E_L_rr_r_o_r_s_K_s_Y_s_T_E_M ___ TRS-BO 1~, ______ o_w_N_E_R_s_MA_N_uA_L_

Sample Directory Listing

1 2 3 4

?j NaMe/, TRSD(IS i
~1lenaMe Attrb
JOBFILE/BLD N•XO
TERMINAL/VI N*XO
TERMINAL/V2 N•XO
LOADX/CMD N•XO
*** 171 Free Granules

2:56
~')C'' t
< .. ,JO

2~56
)1()1(:!(

Definition of column headings

r.:· ~-·

7 8 9 10

o~J/BO l j J
t- 1.,, r n :ft: E :.: t E:. Ul·· [nc t. f.'

1 1 1 01/01
2 1 126 01/01
2 1 114 01/01
2 1 0 08/80

1. Disk Name--The name assigned to the disk when it was
formatted.

2. File Name--The name and extension assigned to a file
when it was created. The password (if any) is not shown.

3. Attributes--A four-character field.
The first character is either I (Invisible file)
or N (Non-invisible file).

The second character is S (System file)
or* (User file).

The third character gives the password protection
status.

X The file is unprotected (no password).
A The file has an access word but no update

word.
u The file has an update word but no access

word.
B The file has both update and access

words.

The fourth character specifies the level of access
assigned to the access word.

0 Kill file and everything listed below.
2 Rename file and everything listed below.
3 Not used.

_______ 4 __ w_r_i_t_e_a_n_dlfiMitiifieti~s~t~e~da...b~e~l~o~w~.-------

PAGE 71

M_o_o_E_L_r_r_r_o_r_s_K_sY_s_T_E_M ___ TRS-BO @ _____ o_WN_E_R_s_MA_N_u_A_L_

5 Read and everything listed below.
6 Execute only.
7 No access.

4. Number of Free Granules--How many free granules remain on the
diskette.

5. Logical Record-Length--Assigned when the file was
created.

6. Number of Records--How many logical records have been
written. Asterisks (*) signify none have been written.

7. Number of Granules--How many granules have been used in
that particular file.

8. Number of Extents--How many segments (contiguous blocks
of up to 32 granules) of disk space are allocated to
the file. Asterisks (*) signify none.

9. End of File (EOF)--Shows the last byte number of the
file

10. Creation Date--When the file was created.

----------ltadaelltaeli----------
PAGE 72

M_o_o_E_L_r_rr_D_r_s_K_s_Y_s_T_E_M ___ TRS-BO<ft-1J ______ o_WN_E_R_s_MA_N_uA_L_

DO
Begin Auto Command Input from Disk File

DO command-line
'command-line' is the name of file

created with BUILD (or its equivalent).

If no extension is included, /BLD is used.

The extension must be omitted in most /BLDs.

This command reads and executes the lines stored in a
special-format file created with the BUILD command. The System
executes the commands just as if they had been typed in from the
Keyboard.

Command lines in a BUILD file may include library commands or
file specifications for user programs.

When DO reaches the end of the automatic command input file, it
returns control to TRSDOS.

The DEBUG command cannot be included in an automatic command
input file.

Running User Programs from a DO-file

In addition to executing TRSDOS library commands, you can load
and execute user programs from a DO-file. You will probably
want to make your program name be the last line in the DO-file.

Examples

DO STARTER

----------ltadaelhaeli----------
PAGE 73

M_o_n_E_L_r_· r_r_o_r_s_K_s_Ys_T_E_M ___ TRS-BO TM,. ______ o_w_N_ER_s_MA_N_U_A_L_

TRSDOS will begin automatic command input from STARTER, after
the operator answers the Date and Time prompts.

AUTO DO STARTER

Whenever you start TRSDOS, it will begin automatic command input
from STARTER.

Sample Uses

Suppose you want to set up the following TRSDOS functions
automatically on start-up:

FORMS (WIDTH=80')
CLOCK (ON)

Then use BUILD to create such a file. If you called it BEGIN,
then use the command:

AUTO DO BEGIN

to perform the commands each time TRSDOS starts up.

----------ladaelllaeli----------
PAGE 7L~

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BOr,,f _________ _

DUAL
Duplicate Ouput to Video and Printer

DUAL (switch)
'switch' is one of two options, ON or OFF.

If option is omitted, TRSDOS uses ON.

This command enables all video output to be copied to the
printer after <ENTER> has been pressed (and vice versa).

The DUAL (ON) command is displayed after being set to serve as
an acknowledgement.

Video and printer output may be different because of intrinsic
differences between output devices and output software.

Using the DUAL command will slow down the video output process.

The DUAL command cannot be used during ROUTE and vice versa.

Sample Use

For a printed copy of all system/operator dialog, type:

DUAL

To turn off the DUAL process, type:

DUAL (OFF)

----------ladaelllaeli----------
PAGE 75

M_o_D_E_L_I_I_I_o_I_s_K_s_Y_s_T-EM ____ TRS-BO@ ______ o_WN __ E_R_s_MA __ N_U_AL,iiiii,,_

DUMP
Store a Program Into a Disk File

DUMP file (START=aaaa,END=bbbb,TRA=cccc,
RELO=dddd)

'file' is the file-specification

START='aaaai is the start address of memory
block. 'aaaa' must be a four-digit hexadecimal number
greater than or equal to 6000H.

END='bbbb' is the end address of the memory
block. 'bbbb' must be a four-digit hexadecimal

number.

TRA='cccc' is the transfer address where
execution starts when the program is loaded. 'cccc'
must be a four-digit hexadecimal number. If this
option is omitted, the command will default to TRSDOS
re-entry.

RELO='dddd' is the start address for
relocating or loading the program back into memory.
'dddd' must be a four-digit hexadecimal number. If
this option is omitted, TRSDOS uses the START address
instead.

Note: Addresses must be hexadecimal form, without the
X' 'notation.

This command copies a machine-language program from memory into
a program file. You can then load and execute the program at
any time by entering the file name in the TRSDOS READY mode.

Examples

DUMP LISTER {START=7000,END=7100,TRA=70g4)

----------- ltadtelllaeli-----------
PAGE 76

M_o_D_E_L_r_r_r_o_r_s_K_sY_s_T_E_M ____ TRS-BO rfi.t ______ o_w_N_E_R_s_MA_N_U_A_L_

Creates a program file named LISTER/CMD containing the program
in memory locations X'7000' to X'7100'. When loaded, LISTER/CMD
will occupy the same addresses, and TRSDOS will protect
memory beginning at X'7000'. The program is executable for the
TRSDOS READY mode.

DUMP PROG2 (S'rART=6000 ,END=6F0'0 ,TRA=8010 ,REL0=8000)

Creates a program file named PROG2/CMD containing the program in
addresses X'6000' to X'6FOO. When loaded, PROG2/CMD will reside
from X'8000' to X'8FOO'. Execution will start at X'8010'. The
program is executable from TRSDOS READY.

----------nuaelllaeli----------
PAGE 77

M_o_o_E_L_r_r_r_o_r_s_K_sY_s_·_rE_M ____ TRS-SO T.¥ ______ o_w_N_E_R s.....,.MA_N_u __ A_L __

ERROR
Display Error Message

ERROR number
'number'

error code.
is a decimal number for a TRSDOS

This command displays a descriptive error message.

**ERROR 47 * *

You respond by typing:

ERROR 47

and the Video will display the full error message.

Example

ERROR 3

Gives you the message:

Lost Data During Disk I/0

For a complete list of error codes, messages and see the
Technical Information section of this manual.

----------ltadaelllaeli----------
PAGE 78

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-B0r"1. __________ _

FORMS
Set Printer Parameters

FORMS (WIDTH=aaa,LINES=bbb)

WIDTH='aaa' is the maximum number of characters
per line. 'aaa' can be any number between one and 255.
If omitted, whatever value currently in effect will be
used. To turn the function off, 255 is used.

LINES='bbb' is the maximum number of lines to
print before an automatic form feed. 'bbb' can be any
number between one and the maximum number of lines of
your page size. If omitted, 60 is used.

This command lets you set up the TRSDOS Printer software to suit
the Printer you have attached. If the Printer was ready when you
started TRSDOS, and the default parameters WIDTH=l32 LINES=60,
are appropriate, then you do not need to use this command.

If no specification is indicated, FORMS will skip to top of
form.

Examples

FORMS

Resets all parameters to their default values (and skips to
top of form).

FORMS (LINES=56)

Resets the maximum number of printed lines per page to 56,
leaving 10 lines blank on each page.

FORMS (WIDTH=80)

Sets up the serial printer driver with BO-character lines and

----------lad1elllaeli----------
PAGE 79

M_o_o_E_L_I_1_1_o_r_s_K_sY_s_T_E_M ___ TRS-BO 'fM) _____ .;;.ow_N_E_R_s......,MA N_u_A_L_

all other parameters according to their default values.

Setting the Parameters

Lines per page. This number determines the number of blank lines
at the bottom of each page. If you set lines equal to page
size, then TRSDOS will print every line on the page. If you set
lines equal to page size minus 6, then TRSDOS will leave 6 blank
lines on each page. Lines per page cannot exceed page size.

Width. This number sets the maximum number of characters per
line. If a print line exceeds this width, TRSDOS will
automatically break the line at the maximum length and continue
it at the beginning of the next Print line.

----------ltadtelllaetl----------

PAGE 80

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO TM, _________ _

FREE
Display Disk Allocation Map

FREE :d (PRT)

':d I is the drive specification

(PRT) tells TRSDOS to send the map to the
Printer.

If omitted, TRSDOS sends the map to the Video
Display only.

This command gives you a map of granule allocation on a
diskette. (A granule, 1280 bytes, is the unit of space
allocation.) This information is useful when you want to
optimize file access time.

When a diskette has been used extensively (file updates, files
killed, extended, etc.), files often become segmented (dispersed
or fragmented). This slows the access time, since the disk

read/write mechanism must move back and forth across the
diskette to read and write to a file.

FREE helps you determine just how segmented your disk files are.
If you decide you'd like to re-organize a particular file to
allow faster access, you can then COPY it onto a relatively
"clean" diskette.

Examples

FREE

Displays a free space map of the diskette in drive 0.

FREE (PRT}

Lists the free space for drive Oto the Printer.

FREE :1 (PRT)

Lists the drive 1 map to the Printer.

----------lladtelllaell---------
PAGE P1

M_o_o_E_L_1_1_1_0_1_s_K_sY_s_T_E_M ___ TRS-BO@) _____ OWN......,._E_R_s __ MA_N_u_A_L __

A Typical FREE Display

Four special symbols are used in the FREE map.
Unused Granule

D Directory Information
X Allocated Granule
F Granule Contains a Flawed Sector (Unusable)

The following is a typical free map display.

Free SPace Map
Tr-It.. t TRSDOS ------------------ Drive: H 00-04: xxxxxx + xxxxxx + xxxxxx • xxxx •• + ♦ + ♦ • .xx ... 0!:'i-09:

•+•+ ♦♦ • + + ♦ • + ♦ ♦ ♦ ♦ ♦ • + + ♦ ♦ ♦ • • ♦ ♦ + + t + + + + ♦ • ♦ ♦ 10-14;
+++ ♦♦♦ • + • + xxxxxx + ♦ + ♦ ♦ • + • + + ♦ • ♦ • ♦ ++++tot • 15--19: xxxxxx • xxxxxx • DODDDD + xxxxxx ♦ xxxxxx • • • • 20-24: xxxxxx ♦ xxx ••• • • + • + + + + ♦ ♦ + • • • • ♦ + ♦ • • ♦ ♦ ♦ + + ~?L:j-~!9;
♦ t++ ♦ +

+ • • ♦ + ♦ ♦ ♦ + + • • + ♦ • + + + • + + + ♦ + + + + + + • + + :30-34: • + • + +++ ♦ + ♦ • + ♦ • + ♦ • + + + ♦ ♦ ♦ + • ♦ ♦ + + ♦ + • + ♦ + ♦ • + ~3•5. ::is·, • ♦ • + ♦ ++ ♦ ++ + • ♦ ♦ ♦ + • + ♦ + ♦ + + + + ♦ + • t + • • ♦ ♦ + ♦ + +

----------- lladaelllaeli----------
PAGE 82

MODEL III DISK SYSTEM ... OWNERS MANUAL
-----------TRS-BO'T.~ -----------

HELP
Explanation of TRSDOS Command

HELP command
'command' is the specific TRSDOS command

which you need help understanding or using. It is an
option.

If omitted, TRSDOS will display a list of all usable
commands.

If a command is used which isn't on the list, TRSDOS
will default the list of usable commands.

This command gives you "help" in using TRSDOS commands by
displaying a specific definition as well as syntax format upon
request.

Without a specific command, TRSDOS will list all available
commands that are defined by and used with the HELP command.

Example

If you type in the following:

HELP BACKUP

TRSDOS will respond with the syntax format, a definition of the
command, and an explanation of the abbreviation.

BACKUP [:dl [:dl
Duplicate a diskette. :d = Drive Number

----------rtadaelllaeli----------
PAGE '"

M_o_D_EL_I_I_I_D_r_s_K_sY_s_T_E_M ___ TRS-SO@ ______ oWN •. _E_R_s ___ MA_N_u_ALliiiiiia_

KILL
Delete a File

KILL file/EXT:d
'file' is the file-specification. If

file-specification is omitted, all unprotected files
with the same extension will be KILLed.

This command deletes a file from the directory and frees the
space allocated to that file. If no drive is specified, TRSDOS
will search for the file, starting with drive O.

Examples

KILL TESTPROG/BAS

Deletes the named file from the first drive that contains it.

KILL JOBFILE/IDY.FOGGY

Deletes the named file from the first drive that contains it.
The file is protected with the password FOGGY.

KILL FORM/A:3

Deletes FORM/A from drive 3.

Sample Uses

When updating a file, it is a good practice to input from the
old file and output updated information to a new file. That way,
if the update is wrong, you still have the old file as a backup.
When you have verified that the update file is correct, you can
KILL the old file.

----------- ladaelllaeli----------
PAGE 84

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRs-eo@ __________ _

LIB
Display Library Commands

LIB

This command lists to the Display all the Library Commands.

Example

LIB

The following is an example of a LIB display.

DOS Read':1
LIE:
APPEND
COPY
ERROR
LOAD
ROUTE

ATTRIE:
CPEATE
FORMS
MASTER
SETCOM

DOS Read~

AUTO
DATE
FORMAT
F't1TCH
TAPE

E:Ac•wP
DEf:::UG
FREE
PAUSE
TIME

BUILD
DIR
HEI ... P
F'FWT
WP

CLEAF~
DO
tCIL..L
PURGE

CL.OCH
DUAL
LIB
RELO

CLS
DUMP
LIST
RENAME

+ ♦ ♦ ♦ + ♦ ♦ ♦ ♦ + ♦ ♦ + + ♦ + ♦ • • • t • + + + • t ♦ ♦ ♦ ♦ + ♦ + + • + ♦ • ♦ ♦ ♦ ♦ • + ♦ • ♦ + • • • + ♦ + + ♦ • • ♦ + ♦

----------ladlelltaeli----------
PAGE 85

M_o_o_E_L_I_II_o_I_s_K_s_Y_s_T_E_M ___ TRS-BO@) ______ o_WN __ E_R_s __ MA_N_u_A_L __

LIST
List Contents of a File

LIST file (PRT,SLOW,ASCII)
'file' is the file specification

PRT tells TRSDOS to list to the Printer.
This is optional. If omitted, only the Video Display
is used.

SLOW tells TRSDOS to pauae briefly after
each record. This is optional. If omitted, the listing
is continuous.

ASCII tells TRSDOS to list the file in the
ASCII format. This is optional.

This routine lists the contents of a file. The liating shows
both the hexadecimal contents and the ASCII characters
corresponding to each value. For values outside the range
(X'20', X'7F'), a period is displayed.

Only ASCII codes 0-7F' are sent to the Printer. All ASCII print
characters have a bit-7 cutoff before being printed.
Furthermore, all ASCII hexadecimal numbers of 80 and above will
be forced to below 7F'.

TABs in the text files will be displayed.

Examples

LIST DATA/TXT

Lists the contents of DATA/TXT

LIST TEXTFILE/A (SLOW)

Lists the contents of TESTFILE/1, pausing after each record.

-----------llad1elltaeli----------
PAGE 86

M_o_n_E_L_r_r r_o_I __ s_K_s_Y_s_T_E_M ___ TRS-BO TM) ______ o_w_N_E_R_s_MA_N_u_A_L_

LIST PROGRAM/CMD (PRT)

Lists the file PROGRAM/CMD to the Printer.

LIST PROGRAM/CMD (ASCII)

Lists the ASCII code for the file PROGRAM/CMD.

---------- ltadaelllaeli----------
PAGE P'7

M_o_n_:e:_L_r 1_r_n_r_s_K_s_Y_s_T_E_M ___ TRS-BO .TM; ______ o_w_N_E_R_s_MA_N_u_A_L_

LOAD
Load a Program File

LOAD file
'file' is a file specification for a file

created by the DUMP c01mnand.

This command loads a machine-language program file into memory.
After the file is loaded, TRSDOS returns to the DOS READY mode.

You cannot use this command to load a BASIC program or any file
created by BASIC. See the BASIC Reference Manual for
instructions on loading BASIC programs.

Examples

LOAD PAYROLL/PTl

Sample Use

Often several program modules must be loaded into memory for use
by a master program. For example, suppose PAYROLL/PTl and
PAYROLL/PT2 are modules, and MENU is the master program. Then
you could use the commands:

LOAD PAYROLL/PTl
LOAD PAYROLL/PT2

to get modules into memory, and then type:

MENU

to load and execute MENU.

----------llad1elllaeli----------
PAGE· 88

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRs-ao,fi.1: _________ _

MASTER
Set Master Read/Write Drive

MASTER (DRIVE=a)
'a' is the drive-specification. If omitted,

Master function is turned off for all drive.

This command allows you to assign a specified drive as the Master
Read or Write drive in the system.

If a drive is specified as the Master drive, TRSDOS will begin
searching at that drive, by-passing all previous drives.

If the file is not found on the specified drive, TRSDOS will
continue searching on the next drive. If the file is not found
on that drive, TRSDOS will indicate an error message for the
file not found.

When no drive is specified, any drive defined as Master will
be released as the Master drivB.

Example

If you enter the command

MASTER (DRIVE=2)

drive 2 will become the Master drive and file searching will begin
at that drive.

----------1tat11olhaeli----------
Page £39

M_o_o_EL_r_r_r_o_r_s_K_sY_s_T_E_M ___ TRS-BO er~ ______ o_WN ... E_R ... s_MA_-_N_u_AL __

PATCH
Change the contents of a disk file

PATCH file (ADD=aaaa,FIND=bb,CHG=cc)
This is the form to use when you are patching a
program. Files created with DUMP will fall
into this category.

'file' is the file-specification

ADD='aaaa' specifies the address at which the
data is found. 'aaaa' is a four-digit hexadecimal
number.

FIND='bb' specifies the string you wish to
find (or compare to). 'bb' is a two-digit hexadecimal
number.

CHG='cc' specifies the string you wish to
change 'cc' to.

This command lets you make minor corrections in any disk file,
provided that:

1. You know the existing contents and location of the
data you want to change.

2. You want to replace one string of code or data with
another string of the same length.

You can use PATCH to make minor changes to your own
machine-language programs; you won't have to change the source
code, re-assemble it, and re-create the file. You can also use
it to make minor replacement changes in data files.

Another application for PATCH is to allow you to implement any
modifications to TRSDOS that may be supplied by Radio Shack.
that way, you do not have to wait for a later release of the
operating system.

Using PATCH on a Program File

-----------ladlelllaeli-----------
PAGE 90

M_o_o_E_L_r_r_r_o_r_s_K_sY_s_T_E_,M ____ TRS-SO 1~ ______ o_WN_E_R s_MA ___ N_u_A_L_

Suppose you want to change seven bytes in a machine-language
program file. First determine where the 7-byte sequence resides
in RAM when the program is loaded. Then make sure your
replacement string is the same length as that of the original
string. For example, you might write down the information as
follows:

File to be changed: VDREAD
Start address: X'5280 1

Sequence of code to be changed: X'CD2D25E5'
Replacement code: X 1 0000009 1

Then you could use the following ccm.~and:

PATCH VDREAD (ADD=5280,FIND=CD2D25E5,CHG=X'gg00gg9•)

----------Radaelllaeli----------
PAGE 91

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO T"!, __________ ,_

PAUSE
Pause Execution for Operator Action

PAUSE message
'message' is the message to be displayed during

the pause execution. This is optional. If omitted,
PAUSE will be displayed by itself.

This command is intended for use inside a DO file so TRSDOS can
print a message or reminder.

To continue after the pause, TRSDOS prompts you with the
message:

PRESS <ENTER> TO CONTINUE

Example

PAUSE INSERT DISKETTE #21
PRESS <ENTER> TO CONTINUE

TRSDOS displays PAUSE, next the message and then prompts you to
press <ENTER> to continue execution.

PAUSE
PRESS <ENTER> TO CONTINUE

TRSDOS displays PAUSE and then next prompts you to press <ENTER>
to continue. See BUILD and DO for sample uses.

-----------ladlOlhaell----------

PAGE 92

MODEL III DISK SYSTEM OWNERS MANUAL -------------TRS-80@) ____________ _

PROT
Use or Change the Master Password

PROT :d (PW,LOCK)
':d• is the drive specification
PW is the prompt for password change
LOCK tells TRSDOS to assign the Master Password

to the unprotected user file.

If LOCK is omitted, user file protection is
left unchanged.

PROT changes file protection on a large scale. If you know
the diskette's Master Password, you can change it.

A diskette's Master Password is initially assigned during FORMAT
or BACKUP. The TRSDOS diskette is supplied with the Master
Password, PASSWORD.

Example

PROT :Ill (PW)

TRSDOS will prompt you with the message:

New Master Password?

which you can then enter.

-----------ladle.llulMI--------
PAGB- --9'3·-

M_o_o_E_L_:r _1_r _o_r_s_K_s_Y_s_T_E_M ___ TRS-BO :r_M• ______ o_WN_E_R_s_MA_N_u_A_L_

PURGE
Delete Files

PURGE :d (file-type)

I: d' is the drive which contains the disk
to be PURGEd.

'file-type' must be one of the following:

SYS System files only.

INV Invisible files only.

ALL All files on disk.

If 'file-type' is omitted, TRSDOS defaults to
user files.

This command allows quick deletion of files from a particular
diskette. To use PURGE, you must know the diskette's Master
Password. (TRSDOS System diskettes are supplied with the
password PASSWORD.)

All System files are required for TRSDOS to function. Do not
eliminate System files if you want to use the diskette in drive
0.

When the command is entered, TRSDOS will ask for the diskette's
password. Type in up to eight characters. Press <ENTER> if you
typed fewer than eight characters. The System will then display
user filenames one at a time, prompting you to KILL or leave
each file.

Example

PURGE :1

TRSDOS will purge user files from drive 1. This would include
BASIC programs.

PURGE :1 (INV}

----------1tad1elllaeli----------
PAGE 94

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BOffi.1: _________ _

TRSDOS will purge all invisible files in drive 1.

---------- ltad1elllaeli----------
PAGE 95

MODEL III DISK SYSTEM OWNERS MANUAL
-----------TRS-BO T~,-----------

RELO
Change Where Program Loads into Memory

RELO file (ADD=aaaa)

'file' is the file-specification

ADD='aaaa' is the memory relocation address
where the program loads into memory. 'aaaa' is a
four-digit hexadecimal number referring to an address
in the user memory.

This command allows you to change the address at which the
program loads into memory. RELO will change the loading address,
not the program itself.

Example

RELO PRO(-;RJl.M/cr-.m, (ADD=6578)

TRSDOS will load the program PROGRA.M/CMD at the new memory
address of 6578.

----------- llatlaelhaell----------
PAGE96

M_o_o_E_L_I_II_o_I_s_K_s_Y_s_T_E_M ___ TRS-BO<YMi ______ o_WN_E_R_s_MA_N_u_A_L_

RENAME
Rename a File

RENAME file file

'file' is the file specification.

The original file name may include a drive
specification or password.

If the new file name includes a drive specification or
password, it will be ignored. The file will retain its
former password, if any.

This command lets you rename a file or program. Only the
name/extension is changed; the data in the file and its physical
location on the diskette are unaffected.

RENAME cannot be used to change a file's password protection.
Use ATTRIB to do that.

RENAME also checks to see that the intended new name does not
duplicate a filename currently on the same diskette. If it does,
the command is cancelled and an error message is displayed.

Example

RENAME MATHPAK MATHPAK/BAS

Tells TRSDOS to add the extension to the filename.

RENAME ABCDE/DAT ABCDEF/DAT

Tells TRSDOS to change the filename only.

RENAME PAYROLLl/TXT.GSR PAYROLL2/TXT

Tells TRSDOS to change the filename; the password is retained

---------- ltadaelllaell-------------
PAGE 0 7

MODEL III DISK SYSTEM OWNERS MANUAL
----------TRS-B0'1Ni----------

automa ly.

RENAME FILEl:3 1"ILE2

'rells 'I'RSDOS to change the filename of the file on drive 3.

---------ftadtelhae~---------

PAGE

M_o_D_E_L_I_I_I_D_I_s_K_sY_sT_E_M ____ TRS-BO@ ______ oWN_E_R_s_MA_N_u_AL __

ROUTE
Routing I/O Devices

ROUTE (SOURCE='aa' DESTIN='bb')
SOURCE= is the source I/O device. This is

optional.

DESTIN=
optional.

is the destination I/O device. This is

'aa' and 'bb' may be any two of the following
two-letter abbreviations:

DO (Display)
PR (Printer)
KB (Keyboard)
RI (RS-232 Input)
RO (RS-232 Output)

If options are omitted, TRSDOS resets I/O Drivers to
their original I/O route.

This command allows you to automatically route I/O devices. For
example, TRSDOS can route information directly from the Keyboard
(KB) to the Printer (PR).

If no source or destination is specified, TRSDOS resets the
routing to its original state.

Note: ROUTE cannot be used in conjuction with the DUAL command.

Example

ROUTE (SOURCE=KB DESTIN=PR)

TRSDOS will route your keyboard input directly to the Printer.

ROUTE

----------- ladlelltaeli-----------
PAGE 99

M_o_n_E_r.._.r_rr_o_r_·s_.K_s_Y_s_,r_E_M ___ TRS·BOJM ______ o_w_N_E_R_s_MA_N_UA_L_

I/0 drivers are returned to their original state.

----------1tad1elllaeli----------
PAGE 100

M_o_o_E_L_II_I_o_I_s_K_s_Y_s_T_E_M ___ TRS-BO@) ______ oWN_E_R_s_MA_N_u_A_L_

SETCOM
Set Up RS-232C Communcations

SETCOM (OFF,WORD=a,BAUD=bbbb,STOP=c,PARITY=d,mode)

OFF turns RS-232C off.

WORD='a' is the number of bit/byte desired.
'a' must be either 5, 6, 7, or 8 depending on your
needs. If omitted, WORD is set to its present value.

BAUD='bbbb' is the desired baud. 'bbbb' must be
a decimal number between 50 and 9600. If omitted, BAUD
is unaffected.

STOP='c' is the desired number of bits. 'c'
must be either 1 or 2. If omitted, STOP is unaffected.

PARITY='d' determines whether the parity is odd,
even, or none. 'd' must be O (none), 1 (odd), or 2
(even). If omitted, PARITY is set to its present
value.

'mode' type either WAIT or NO WAIT

Options must be entered in the order shown.

If option is omitted, you must instead press <ENTER>
to register the present value.

This command initializes RS-232C communications via the channel
port on the back panel. Before executing it, you should connect
the communications device to the Model III.

To change the setting on a currently active channel, you must
first turn the channel off. If the channel is already off when
you try to turn it off, you'll get an error message.

See the Model III Operation Manual for a description of RS-232C
signals used. For hard-wired connection from one Model III to
another, see the wiring diagram in Technical Information,
RS-232C supervisor call.

----------INtelllaeli----------
PAGE 101

M_o_n_E_L_r_1r_o_1_s_K_s_Y_s_T_E_M ___ TRS-BOt~: _____ -o_w_N_E_R_s_MA_Nu_A_L_

These system routines are only available when the channel has
been initialized, see Technical Information for details.

Examples

SETCOM (WORD=7,BAUD=30i,STOP=l,PARITY=0,WAIT)

This would set the RS-232C to 7 bits, 300 baud, 1 stop bit, no
parity, and place it in the WAIT mode.

SETCOM

'l'he command without specifications will default to 300 baud,
seven bits, even parity, and one stop bit.

The following program will allow you to use your Computer as a
terminal. For further information, refer to the Operation
section, page 8/2, of your Model III Operation Manual.

Note: This program executes at 300 Baud.

'.'i Dti·J:Hl ti----l 'Ir!Tf:b!::l·<'. t.1f.1!•lhi:::,.1::. F1)1::: bPEi::T
1{1 1>fJfC: 16(1(,k, ,B' ,·our-.11 ·1· l.,l(11T For:: f,t:.F'.1hL 1/0
l',:; i>u1·1::, l<'ieHF, (r.,_i\<l6)+.'i /"I):'./F:r.: 1-) r,·1 Bt\Uf\ ,~:hTL 3-'1-B-
:·,.1::f Of:TU!:3/'.-0 :: i,Htli;'_:,(1:: F·Cri !:WI UP Cf'.\LL. TIJ tf:'.3lt-U.1
"ttr X, ;:: U'::~;:!J r, 0)
6¥ D F FU '::H<!. "" 8: i'"hJt} ': ,:13
6'': C'iYU'::-F'.2 "" fH.iH:1'.'';B
/Br Ct '" :l bf,>·/ , i:Ht:!;:,:it::TEF'. Hff UT BUFFFli
H~ CC• ,::: t6HU-# 'CHt.F'.hLTEP Ut!lF'UT E:U!·· i:;,
r:J ff l (: t·i ::;·, '.::· !<. f. t) r;:- GE f,·! ::c f~l L :r 1\! F' iJ r

'IF C = ~. NOlHINC HAPPlNS

:i..8' C'i, "1P!1·<1;,,j;
16!1 :I;::" C'!' :::: "" TI-H:i~1 :ll~ 'NU ~~EY, !3U CU CHECl•i bEF(LtiL
l~ PRINl cw: 'Sl ~ ECHO
1/.8" f'Chi: CU, t:di· (C'!i) 'f'UT C:Hf'.1Ff.:i1.·n:P INTO OUTPUT F:UFFEF:
l <,:•1:r x "'' u:~;1-<'.:::: .: B-) ' c t,LL $F'.3 Tl

'GO CH;:c1-:: SEF::uu .. lMPUT

---------- lladaolllaell----------
PAGE 102

M_o_D_E_L_I_I_l_D_I_s_K_s_Y_s_T_E_M ___ TRs-eo@ ______ o_WN_E_R_s_MA_N_UAL __

TAPE
Execute Tape Transfer Operation

TAPE (S=a,D=b)
S= is the source device for beginning the

operation.

D= is the destination device to complete the
operation.

'a' and 'b' may be any of the following
abbreviations:

T (Tape)
D (Disk)
R (RAM/Memory)

TAPE allows you to transfer program files from one memory device
to another.

The following combinations may be used.

Disk TO Tape
Tape TO Disk
Tape TO RAM

If you transfer information from Tape to Disk, TRSDOS will
display the tape filename and prompt you with the following:

Cass?

You should press <H> (High speed), <L> (Low speed), or <ENTER>
(High speed will be used), whichever is appropriate.

Press any key to continue.

If you are transfering disk information to tape, TRSDOS will ask
you the file-specification before you can proceed.

-----------ladle·lltaeli----------
PAGE 103

MODEL III DISK SYS'rEM OWNERS MANUAL ----------TRs-ao,TM ______________ _

Example

TAPE (S=D, D=T)

After the prompt, TRSDOS will transfer a program file from a
diskette to a cassette tape.

----------rtadtelhaell----------
PAGE104

MODEL III DISK SYSTEM OWNERS MANUAL ------------TRS-BO(fMi ___________ _

TIME
Reset or Get the Time

TIME hh:mm:ss

'hh:mm:ss' is the specification for the hour
(hh}, minute (mm), and second (ss).

Each must be a two-digit decimal number between the
following ranges:

hh
mm
ss

0-23
0-59
0-59

If 'hh:mm:ss' is· given, TRSDOS resets the time.

If 'hh:mm:ss' is not given, TRSDOS displays the
current time.

This command lets you reset or display the time.

It should be remembered that the built-in clock is a 24-hour
clock. Therefore, any times displayed or reset after 12:00 noon
will be greater than 12 and less than 24. (For example, 1:00 pm
is displayed as 13:00 o'clock.}

You initially set the time when TRSDOS is started up. After
that, TRSDOS updates the time automatically, using its built-in
clock.

When you request the time, TRSDOS displays it in this format:

14:15:31

for 2:15:31 pm.

Examples

TIME

-----------ladlelllaell-----------
PAGE 105

M_o_o_E_L_r_rr_o_r_s_K_s_Y_sT_E_"'M ___ TRS-801~ ______ o_w_N_ER_S_MA_N_U_A_L_

Displays the current time.

TIME 13:20:il..el

Resets the time to 1:20:00 pm (13:20:00 will be displayed).

Note: If the clock is allowed to run past 23:59:59, it will
re-cycle to zero, the date will be incremented, and the clock
will continue to run.

----------1tad1elllaeli---------
PAGE 106

M_o_o_E_L_I_I_I __ o_I_s_K_sY_s_T_E_M ____ TRS-BO 1~ ______ o_WN_E_R_s_. _MA_.N_U_A_L_

WP
Write Protect Software

WP (DRIVE=d)
'd' specifies the disk-drive to be

protected. If omitted, all drives will be unprotected.

Diskettes can be protected from being over-written by this
command. It is a software write-protect rather than a hardware
write-protect (such as a write-protect tab on the diskette).

Only one drive may be protected at a time.

To un-protect on a diskette, making it accessible to writing,
simply enter the command WP and press <ENTER> and all drives
will be un-protected. This will not, however, override a
write-protect tab.

Examples

WP (DRIVE=l)

TRSDOS will write-protect the disk in drive 1.

WP

TRSDOS will eliminate write-protection on all drives.

----------------ladlellllletl,. ___________ _
PAGE 107

MODEL III DISK SYSTEM OWNERS MANUAL
-----------TRS-80 1!,f; __________ _

TRSDOS Utility Commands

----------- ltaf.laelhaell----------

MODEL III DISK SYSTEM ouruERS MANUAL ------------TRS-B0 (T~ _______ ,,._n....,....,......,...,....,.._

J;3ACKUP
Create an Exact Copy of an Original Disk

BACKUP :source-drive :destination-drive

':source-drive' Tells TRSDOS the number of
the drive containing the original disk

':destination-drive' Tells TRSDOS the number of
the drive containing the copy disk

if source/destination numbers are omitted, TRSDOS
requests the specific drive-numbers

Note: Spaces are necessary before colons.

BACKUP copies the contents of the source-disk to the
destination-disk. This gives you a "safe" copy of the disk.
Always keep an extra copy of data or programs you have stored on
your disks.

TRSDOS will prompt you at each step after you type:

BACKUP

If you omitted the source/destination-drive numbers, TRSDOS will
begin with the prompts:

SOURCE DRIVE NUMBER

Type in the number of the drive that contains the source
diskette and press <ENTER>.

DESTINATION DRIVE NUMBER?

Type in the number of the drive that will contain the
destination diskette and press <ENTER>.

SOURCE DISK MASTER PASSWORD?

-----------IINtellllleli-----------
PAGE, 1 O<"l

MODEL I II DISK SYS'fEM OWNERS MANUAL
-----------TRS-B05M·----------

Type in the password assigned to your source diskette.

DISK CONTAINS DATA, USE DISK OR NOT?

Type in Y (Yes) or N (No).

DO YOU WISH TO RE-FORMAT THE DISK?
Type in Y (Yes) or N (No).

If you specified the source/destination-drives, TRSDOS will
request the PASSWORD, skipping the first two steps.

TRSDOS will then take charge of formatting and verifying the
destination disk as well as letting you know if there are any
errors or flawed tracks.

---------- ltadtelhaeli----------

PAGE 110

MODEL III DISK SYSTEM OWNERS MANUAL -------------TRS-BOcr~-------------

CONVERT
Model I to Model III Program Conversion

CONVERT

Model I formatted diskettes containing program and data files,
cannot be used with your Model III Computer unless the
information is first "transported" to a Model III diskette.

This is necessary because of Model III's many special features,
such as a difference in the number of sectors as well as the
density of the disk.

CONVERT allows you to transport the information by reading a
Model I formatted diskette, reformating the information, and
then copying it unchanged onto a Model III formatted diskette.
(Note: If you try to copy onto an unformatted diskette, TRSDOS
will prompt you to FORMAT the diskette first. The destination
diskette must be a Model III formatted diskette.}

The Model I diskette may still be used on a TRS-80 Model I since
only the transported information was reformatted when it was
copied, not the Model I diskette itself.

(Note: The process converts Model I formatted information to
Model III formatted information only. Model III formatted
information cannot be converted for Model I use.}

Only user files may be converted. CONVERT will disregard any
Model I system file it encounters on a diskette.

Before you begin the conversion process, always be sure there is
a Model III TRSDOS system disk in drive O of your TRS-80 Model
III.

----------- ladaelbaeli-----------
PAGE 111

MODEL III DISK SYS'rEM OWNERS tA..ANUAL -----------TRS-BO(riA; _________ _

Once you enter the command, TRSDOS will prompt you for the
source- and destination-drives, list the Model I diskette
filenames, and then execute the conversion.

Information is then reformatted and copied from one drive to
another (from drive 1 to drive 0 or from drive 2 to drive 1, for
instance) as long as the Model III system disk remains in drive
0 and the source drive number is greater than the destination
drive number.

Once the original files have been reformatted and the
information copied, the diskette containing the reformatted
information may be used just like any other Model III diskette.

For example, if you wish to COPY the converted programs or data
files onto another Model III diskette, you may do so in the
normal manner. If you don't need the information and wish to
free the space, you may then KILL the files.

Example (for a typical two-drive system)

If you enter the command:

CONVERT

The following prompt will appear:

Source Drive?

You should type the drive-number of the Model I diskette --1.

You will then be prompted with:

Destination Drive?

You should type the drive-number of the Model III diskette--a.

If CONVER'r encounters a Model I filename which is the same as a
filename on the Model III diskette, the message:

----------1tad1elllaeli----------
PAGE 11 2

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO Tl>I _________ _

File Exists. Use It?

will appear. If you want to copy over the file on the Model III
diskette, simply type:

y

for YES. Otherwise, you can type:

N

for NO.

Next, the filenames of the Model I diskette will be displayed as
they are converted for Model III use.

CONVERT will end the operation with the message:

Conversion Complete

The information on the Model I diskette in drive 1 would have
been copied and reformatted to a Model III format on the
diskette in drive O, enabling you to use the Model I programs
and data files now on the diskette in drive O with your Model
III system. You could, however, still use the Model I diskette
with a Model I TRS-80 since the Model I diskette itself has not
been changed.

The only change which occured was the re-formatting of the
information as it was copied to the Model III diskette.

Note: If you are using either a three- or four-drive system
(multi-drive), you may use, for example, drive 1 as the
destination drive and drive 2 as the source drive. Drive O is
reserved for the Model III system diskette.

Sample Use

You wish to convert a Model I diskette which contains a file
called JOBFILE/BLD. (Multi-drive system.)

DOS Ready

-----------ladaelllaeli-----------
PAGE 11 7-

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BOr~.----------

.
Type:

CONVERT <ENTER>

The following message will be displayed:

Model 1 To Model 3 Conversion Utility. Ver v.r

('v.r.' is a pair of numbers specifying the version and release
you have.)

Source Drive?
Type:

2 <ENTER>

Destination Drive?
Type:

l <EN•rER>

The filenames on the diskette will be displayed:

JOBFILE/BLD

The following message will appear when the command execution is
complete:

Conversion Complete

DOS Ready

Note: Files with access password must be blank (see ATTRIB
(ACC=,)) before conversion can take place. If access password is
not blank, the file cannnot be converted and will be skipped
over (no message will indicate this) and CONVERT will pass on to
the next file.

If you have a file with an update password, TRSDOS will prompt
you for the password. If the correct password is given, the
conversion will take place.

-----------lladaolllaeli----------
PAGE 1111

M~O.,,l;;D.:;;E~Lr....,;;;;I,;i;;I,;i;;I_Dlii,i;;;,IIS_K....,;S_Y_,;;S.,.T_E_M ____ TRS-BO (f~ OWNERS MANUAL

If an incorrect password is givenm you will be re-prompted,

If the update password is unknO'wn, vou can press ENTER. The
original password will then be copied along with the file and
the file will then be assigned an unknown passwora.

In other words, if you're unable to update a file on Model I
because you don't know the password, you will not be able to
update it on Model III; you can, however, still copy and convert
it.

Note for Machine-language programmers: Machine-language programs
may be converted as long as the address calls are the saroe. If
the address calls are not the same, the conversion will still occur
but the program may not execute correctly. For changes in these
calls, see the Technical Information section of this manual and
the Model III Operation Manual.

----------- ladaelllaeli----------
P.Ac:E 115

M_o_o_E_L_r _r r_o_r_s_K_s_Y_s_T_E_M ___ TRS-BO t~) ______ o_w_N_E_R_s_MA_._N_u_A_L_

FORMAT
Prepare a Data Diskette

FORMAT :d

':d' is the disk-drive which contains
the diskette being formatted

This command lets you prepare data diskettes (either new or
disks which contain undesired data or programs), leaving you
with a maximum amount of space for program and data files.

Note: Data diskettes can only be used in drives 1, 2, and 3
except during a BACKUP or FORMAT.

FORMAT takes a blank (new or magnetically erased) diskette,
records track/sector boundaries on it, then initializes it with
directory and bootstrap files.

When FORMAT detects a non-blank diskette, it will display a
warning message:

DISK CONTAINS DATA, USE DISK OR NOT?

Type Y (Yes) and press <ENTER> if you do want to re-format, N
(No) and press <ENTER> if you want to save the disk information.

FORMAT will lock out any defective tracks to prevent data from
being lost in these areas.

If you begin to get READ errors during access, re-format the
disk. If there are defective tracks, FORMAT will lock them out,
and you'll be left with an otherwise usable diskette.

----------ltadtelhaeli----------
PAGE 11 (j

TRSDOS
Technical
Information

Contents of This Section

Disk Organization
File Structure
System Routines for Assembly 1/0

Data/Device Control Blocks
Physical and Logical Records
Fundamental TRSDOS 1/0 Calls

TRSDOS Error Codes/Messages

1 1 'i

T
R s
D
0 s

TRSDOS Technical Information

Disk Organization

Each TRSDOS system diskette contains a TRSDOS system, a utility
command library, a file directory, and system tables.

The minimum system overhead amounts to one full track of directory
information and a half track of TRSDOS bootstrap program and
other information. This means that every TRSDOS diskette is self
loading, although it may or may not actually contain the TRSDOS
system. This is done to prevent the Computer from attempting to
bootstrap a diskette containing only user data files.

The utility command library is optionally available on the diskette.
Since the utility command programs are not always required,
it will often be advantageous for multi-drive users to format
diskettes for use in drives l through 3. Such "data diskettes"
contain a minimum -of system code, leaving more space for user

11 R

TRSDOS Technical Information

files. Maximum file size is limited only by the physical size of the
diskette, since a file must be wholly contained on one diskette.

Each diskette is single-sided and has 40 tracks of information.
Each track contains 18 sectors of 256 bytes each.

Normally, data read/write operations may only be initiated at sector
boundaries, and must consist of exactly 256 bytes. However,
TRSDOS allows the user to have maximum flexibility-with minimal
effort by automatically blocking and de-blocking all file accesses
to user-specified logical record lengths, even if this requires
"spanning" of two sectors.

The system disk file structure allows maximum use of disk file space
by automatically segmenting files across a diskette in several small
pieces. These pieces are correlated into one logically contiguous
file by the system without your needing to know the physical file
location. This structure eliminates time-consuming disk-packing
operations.

File Structure
A TRSDOS file is composed of one or more segments of storage
space. Each segment consists of from one to 32 physically
contiguous granules of storage. A granule is the minimum
allocatable unit of storage, and consists of 3 sectors (768 bytes).
(See Figure below).

Since a file is always lengthened by granules, a small amount of free
storage is generally present at the end of every file. This free
storage allows minor file additions to be made in space which is
physically contiguous to the file.

The effect is to decrease the amount of "thrashing" present in a file
which has had frequent additions made. (A wholly sector-mapped
system could not offer this benefit.)

Every time a ct1sk file is extended (either initialized or lengthened},
extra granules may be allocated to that file, depending on the file's
accumulated length, diskette space, saturation, etc. These extra
granules, along with all granules after the one containing the file's
EOF mark, are recovered and returned to the system when the file
is closed.

1 1 9

TASDOS Technical Information

A TRSDOS file

ALE:
EXTENT I EX.TENT 2

SEGMENT:..__G_RA~N_U_LE_I_G_R_A_N_ULE_2 ___ G_R_A_N_U_L_E_3_2

GRANULE: SECTOR X SECTORX+I

SECTOR: BYTE I BYTE2 BYTE 3

LRN: Logical Record Number, used to specify an individual,
user-defined logical record. Such a logical record is the
smallest unit of information which can be addressed
during disk input/output (a physical record is the unit
which is actually read from or written to disk).

SECTOR X-+-4

BYTE 256

File: A group of logical records; the largest unit of information
which can be addressed by a TRSDOS command.

Sector: A physical record, composed of 256 contiguous bytes.

Granule: The minimum allocatable unit of storage for any
file.

Extent: One contiguous allocation of
Granules

120

TRSDOS Technical Information

System Routines for Assembly-Language 1/0
This information is provided for customers who wish to write their
own assembly level 1/0 routines. An explanation of the calling
sequence and parameters for each necessary I/0 routine is given.
A knowledge of Z-80 machine code is assumed.

The following notations are standard in this section:

HL= > xxxx Registers HL contain the address of (point to)
xxxx in machine format. (If address of
xxxx=34B2H then the values in the registers are:
H=34; L=B2)

DE= > xxxx Registers DE contain the address of (point to)
xxxx in machine format. (If address of
xxxx=5AF 1 H then the values in the registers are:
D=5A;E=Fl)

B= xx Register B contains the numeric value of xx in
binary form. If xx=64 decimal, then B=40H.

A= xx Register A contains the numeric value of xx in
binary form. If xx= 127 decimal, then A=7FH.
Register A is used to return the TRSDOS error
code for 1/0 calls. A complete list of error codes
and their meanings appears at the end of this
chapter.

Z=OK Zero flag is set (OK) if successful return from the
system routines.

X'nnnn' Hard RAM address in uex notation (e.g., 402D is
X'402D').

LRL Logical Record Lengtn. 1-255 bytes only. You
can define records any length you wish up to 255
bytes maximum. A length of zero is a special
case for physical records only, and indicates
the LRL=256 bytes.

BUFFER 256 user designated bytes in RAM for TRSDOS
to read sectors from or write sectors into. If
LRL=0, this area is the responsibility of the user
to manage before and after I/0. TRSDOS
manages this area if LRL is between 1 and 255
bytes. Do not alter this area when using logical
record processing.

UREC User record: the address of the contiguous
RAM byte-string assigned by the user as his
logical record area. Its length must be equal to
LRL. It is a different area from BUFFER.

1 ? 1

TRSDOS Technical Information

DCB before OPEN and after CLOSE:

The DCB .is defined as SO contiguous bytes of RAM designated by
the user. Before OPEN and after CLOSE, it is a left justified,
compressed (no spaces) ASCII string, as in a standard TRSDOS
filespec:

CONTENTS OF SO- BYTE DCB

Notes: /EXT, .PASSWORD, :0 are optional.
$ stands for a carriage return (X'OD')
lo stands for a blank (X'20')

Explanation of DCB while OPEN:

lsb/msb is least significant byte followed by most significant byte in
Z80 RAM format (i.e. addr=7CC8 in RAM is CS 7C).

Addr. Len. Explanation

DCB+0 -- 3 - Reserved
+3 2 - Physical Buffer address (lsb/msb)
+5 1 - Offset to delimiter at end of current record
+6 1 - File drive number residence
+7 1 - Reserved
+8 1 -- EOF offset of last delimiter in last physical record
+9 - 1 - LRL (logical record length)

+10 - 2 - NRN (next record no. - open sets=X'0000' - lsb/msb)
+12 - 2 - ERN (ending record no. - last in file - lsb/msb)
+14 - 50 - Reserved

NRN Next Record Number defines which record is to be read or
written by the next system call for READ or WRITE. It is
automatically incremented by one after each system call. In order to
process random files, use the POSN call to direct TRSDOS to the
record you wish to transfer next.

ERN Ending Record Number is the last record number currently
in the file. It is put into the directory at CLOSE time, so if it is
expected to be correct, the user must close his files after adding
records to a file. This value may also be used to position to end of
file so that new records may be added to the end of the file. To
position to the end of file use a call to POSN with a record number
of ERN+ 1. POSN is described later.

1 ??

SC

~ I

TRSDOS Technical Information

Physical and Logical Records in TRSDOS

A physical record is defined as one sector of disk. One sector of disk
contains 256 user data bytes. The artificial term "granule" is
defined to be 3 sectors of disk space. There are 6 granules on each
of the 40 tracks on the disk. A granule is the least amount of space
allocated by TRSDOS. For programming purposes, the physical
records in a file are numbered from Oto N. The largest record
number (N) in a file will then be 3 times the number of granules
allocated minus one ((3*G)-l). All TRSDOS granule allocations
are made as needed at the time of write, not when the file is
created.

Bytes Sectors Granules Tracks Disk

256 1
768 3 1

460& l& 6 1

1&4320 720 240 40 1

Disk Space Table: For each 5-1/4" Disk Drive

A logical record is defined by the user of TRSDOS. It may be
anywhere from 1 to 255 bytes in length. Once a file is opened with
a specific LRL (Logical Record Length), the length is fixed until
the file is closed. To change a file's LRL, you must CLOSE it and
re-OPEN it with the new LRL.

Each opening of the file sets a single, fixed record-length.
TRSDOS will "block" logical records into (or from) one physical
record for maximum space utilization on the disk.

Blocking is putting more than one logical record into one physical
record. For instance, four 64-byte logical records will fit into one
256-byte physical record. A logical record may be broken into two
parts by TRSDOS in order to fill the last portion of one physical
record entirely before beginning to use the next physical record
(i.e. records are spanned). This occurs when the physical record
length is not an even multiple of the logical record length.

If the user wishes to do his own blocking, he may specify a logical
record length of 0 bytes at the time ofINIT /OPEN and must himself
manage the contents of the physical record buffer area of 256 bytes.
TRSDOS will not move a logical record for the user if LRL=0; in
this particular case it will only read/write the physical record
to/from the buffer.

1 2-:,;

TRSDOS Technical Information

Fundamental TRSDOS 1/0 Calls
Them are 17 fundarnental TRSDOS routines involved in handling
fik~ 1/0. These are:

INIT
OPEN
POSN
READ
WRITE
VERF
PUTEXT
BACKSPACE
REWIND

POSEOF
SYNTAX
DIVIDE
DMlJLT
RAMDIR
FILPTR
CLOSE
KILL

The detailed calling sequences and discussions for each of these routines
follow. Note that all of these system calls use register F and do not
restore its value before return. In order to properly apply this data,
you should read through all of these descriptions and clear up all of
the points that are not obvious to you by using other reference
materials. If you are successful in doing this you will find that
TRSDOS is a workable tool for your programming ideas.

INIT (jump vector = X' 4420')
INIT is provided as an entry point to TRSDOS which will
create a new file entry in the directory and open the DCB
for this file. INIT scans the directory for the filespec name
given in the DCB. If the filespec name is found, INIT
simply opens the file for use. If the name is not found,
a new file is created with the filespec name.

entry: HL= >BUFFER (see beginning of this section for notation)
DE==>DCB
B= LRL
CALL 4420H

exit: Z=OK
C carry flag is ON if a new file was created
A=TRSDOS error code. (Error codes listed at end of

this chapter)

TRSDOS Technical Information

OPEN (jump vector = X'4424')
OPEN provides a way to open the DCB of a file which
already exists in the directory. The DCB must contain
the filespec of the file to be opened before entry to OPEN.

entry: HL= > BUFFER
DE=> DCB
B= LRL
CALL 4424H

exit: Z=OK
Z=0 if file does not exist.
A=TRSDOS error code.

POSN (jump vector= X'4442')
POSN positions a file to read or write a randomly selected
logical record. Since it deals with logical records, the
proper computation is done to locate which physical
record(s) contain the data. Following a POSN with a
READ or WRITE will transfer the record to/from RAM.

Note that positioning to logical record zero sets the file
to read the first logical record in the file. To position to
end of file in order to add new records onto the end, use
the record number ERN+ 1 (see page 2).

entry: DE=> DCB (must have been opened previously)
BC== Logical record number to position for.
CALL 4442H

exit: Z==OK
A=TRSDOS error code.

READ (jump vector = X' 4436')
If LRL>0, READ transfers the logical record whose number is

in the DCB as NRN (see page 2) into the RAM area
addressed as UREC for the length LRL as defined at open
time. The record comes from the RAM BUFFER defined
at open time. If TRSDOS must read a new physical record
to satisfy the request, it will do so. "Spanned" logical
records will be re-assembled as necessary. READ auto
matically increments NRN by one in the DCB after the
transfer is completed. INIT/OPEN sets NRN=X'0000' in
order to read the first record with the first READ.

If LRL=0, READ transfers one physical record into the RAM
BUFFER, which was defined at open time, from the disk
file. Registers HL are ignored. READ increments NRN
as above.

TRSDOS Technical Information

entry: HL= > UREC if LRL is not zero. Unused if LRL=0.
DE=>DCB
CALL 44364

exit: Z=OK
A=TRSDOS error code. (EOF=X'lC' or X'lD')

(see errors 28,29 for EOF or NRF)

WRITE (jump vector = X' 4439')
IF LRL> 0, WRITE transfers'the one logical record from

the RAM area addressed as UREC for the length LRL as
defined at open time. The record goes into the RAM
BUFFER which was defined at open time. If TRSDOS
must write a physical record in order to satisfy the
request, it will do so. "Spanning" will be handled by
TRSDOS as necessary. At INIT/OPEN time the DCB
value of NRN is set to X'0000' so that the first record will
be written. After each logical record is transferred, the
NRN value in the DCB will be incremented by one.

IF LRL=0, WRITE transfers one physical record from the RAM
BUFFER into the disk file using the NRN in the DCB.
BUFFER IS DEFINED at INIT/OPEN time only. The DCB
value NRN is updated as above, after the WRITE.

entry: HL= > UREC if LRL is not zero. Unused if LRL= 0
DE=> DCB
CALL 4439H

exit: Z=OK
A=TRSDOS error code.

VERF (jump vector = X'443C')
The only difference between VERF and WRITE is that
VERF writes one physical record to disk and then reads
it back into a special TRSDOS RAM area not defined by
the user. This special area and the original write buffer
are then compared byte by byte to assure that the record
was successfully written.

entry: HL= > Sarne as WRITE above.
DE=> DCB
CALL 443CH

exit: Z=OK
A=TRSDOS error code.

1 26

M_o_D_E_L_r_rr_D_r_s_K_s_Y_s_T_E_M ___ TRS-BO @l ______ oWN_E_R_s_MA_N_u_A_L_

PUTEXT ------ 17492/X'4454'

This routine will add an extension to a filename if an extension
does not already exist. An extension to a filename can identify
the type of data file being stored.

Entry Conditions

(DE)= Disk DCB before the OPEN
(HL) = The extension to be added to the file

Exit Conditions

None

BACKSPACE----- 17480/X'4448'

This routine positions the file record pointer to the previous
record. This is useful in record sequence-checking.

Entry Conditions

(DE)= DCB

Exit Conditions

z = Invalid position in file
NZ= Invalid position in file (REC-1)-1

----------lad1elllaeli----------
PAGE 127

M_o_n_E_L_rr_. 1_n_r_s_K_s_Y_sT_E_M ___ TRS-BO '\'-'; ______ o_w_N_ER_s_MA_._N_u_A_L_

REWIND----- 17471/X'443F'

Point to the beginning of the file. This routine positions the
file pointer to the first record in the file. This is useful
when the same file must be processed more than once (especially
payroll for checks and check registers).

Entry Conditions

(DE)= DCB

Exit Conditions

Z = Good file specifications
NZ= Bad file specifications

POSEOF ----- 17477/X'4445'

Point to end-of-file. This routine positions the file pointer to
the last record in the file. This may be used to verify that the
last record was written to the file.

Entry Conditions

(DE)= DCB

Exit Conditions

Z = Good file specifications
NZ= Bad file specifications

---------- ltadaelhaell----------

PAGE 12P

M_o_D_E_L_r_r_r_D_rs_K_s_Y_s_TE_M ___ TRs-so@ _____ o_WN_E_R_s_MA_N_U...,AL_

SYNTAX----- 17436/X'441C'

Move a file specification to DCB. This routine takes a file
specification and checks it for validity and moves it to a DCB
so that the file may be opened.

Entry Conditions

(HL) = Filename
(DE)= DCB

Exit Conditions

z = Good file specification
NZ= Bad file specification

DIVIDE----- 19295/X'4B5F'

The divide routine provides a 16-bit dividend and an·S-bit
divisor. After division, the quotient replaces the 16-bit
dividend and the remainder the 8-bit divisor.

Entry Conditions

(HL) = Dividend
(A)= Divisor

Exit conditions

(HL) = Quotient
(A) = Remainder

---------- IIINlaelllaell----------

PAGE 129

M_o_n_E_L_r r_r_o_r_s_K_s_Y_s_·r_E_M ___ TRS-BO ,r~, ______ o_w_N_E_R_s_MA_N_u_A_L_

DMULT ----- 19269/X'4B$%'

The multiply routine provides a 16-bit multiplicant and an 8-bit
multiplier. After multiplication takes place the product
replaces the 16-bit multiplicant.

Entry Conditions

(HL) = Multiplicant
(A)= Multiplier

Exit Conditions

(HL) = Product
A= Overflow, if any

----------nadae/llaell----------
PAGE 1 30

M_o_D_E_L_r_rr_D_r_s_K_s_Y_s_T_E_M ___ TRS-BO@ ______ oWN_E_R_s_MA_N_u_A_L_

RAMDIR ------- 16975/X'424F'

This routine allows you to examine a diskette directory (one
entry or the entire directory) or the diskette's free space. The
information is written into a user specified RAM buffer.

Only non-system files will be included in the RAM directory.

Entry Conditions

B = specified drive number

C = Function switch:

Contents of C

0

1 - 96

255

Results

Gets entire directory
into RAM. (See RAM
Directory Format).

Gets one specified directory
record into RAM, if it exists.
(See RAM Directory Format).

Gets free-space. information
(See RAM Directory Format).

HL = Buffer area where record is to be sent (user
determined).

Exit Conditions

NZ= Error occurred.

-----------ladlolllaeli-----------
PAGE 1 ;1

MODEL III DISK SYSTEM OWNERS MANUAL ----------TRS-BOT"'----------

Z = No error. HL = directory or free-space information.

----------1tad1elhaell----------
PAGE 132

MODEL III DISK SYSTEM OWNERS MAlrOAL
------------TRs-ao•r~ ------------

: Directory Format

directory is made up of records, one per file. All values
hexadecimal. Each record placed in user RAM is in the

lowing format:

Byte Number

0-14
15
16
17
li-19
20-21
22

contents

Filename/EXT:d (left-justified followed hy spaces)
Protection Level --Binary 0-6
Byte EOF (0-255)
Logical Records Length -- Binary 0-255
Last sector number in file -- Binary
Number of Grans file allocated (LSB,MSB)-Binary
"++" (Marks the End of Directory after

entire directory.) ·

----------aattaelllaeli----------

M_o_D_E_L_rr_r_D_r_s_K_s_Y_s_T_E_M ___ TRS!-BO@) ______ OWN __ E_R_s_MA_Nu_AL __

FILPTR -------- 16972/X'424C'

This routine provides information on any user file that is
currently open. It enables you to obtain the drive number and
the logical file number for any file and should be used in
conjunction with RAMDIR.

Entry Condition

A= 424C

(DE)= Data Control Block (DCB) defined when file when
file was opened.

Exit Condtions

NZ= Error occurred.

Z = No error. The following registers are set up:

B = Which drive contains the file (binary 0,1,2, or 3).

C = Logical file number (1-96)

Note: This operates with User files only.

-----------bdaelllaeli----------

PAGE '134

TRSDOS Technical Information

CLOSE (jump vector= X'4428')
CLOSE closes a file from the last processing done. It is
very important to do a CLOSE on every file opened before
the program ends. If you do not close a file, the directory
entry for this file is incorrect if any new records have been
written into the file. Other cases are not given here, but it is
very important to TRSDOS that all of the "housekeeping"
is complete for file management.

entry: DE=> DCB
CALL 4428H

exit: Z=OK
A=TRSDOS error code.

KILL (jump vector= X'442C')
KILL deletes the directory entry for an open file and then
completes the close on the DCB. The disk space released
by the old file is now re-useable for other purposes.
Otherwise KILL is the same as CLOSE.

entry: DE= > DCB
CALL 442CH

exit: Z=OK
A=TRSDOS error code.

Supplementary Information

Other routines and addresses which may be of interest are defined
here. Pay particular attention to the error routine. It does NOT
perform error recovery. It displays TRSDOS error messages on the
video display.

(1) CALL 402DH - Normal return to TRSDOS at program end.

(2) X' 44 70' address of the 64-byte buffer that contains the
last TRSDOS command that was entered. Useful
to decode special parameters entered when
program was executed (run).

(3) If HL = > 8-byte buffer, then:
CALL 35ADH returns the time of day into the 8 bytes

in the ASCII format·- HH:MM:SS
CALL 35BBH returns the date into the 8 bytes in the

ASCII forn1at - MM/DD/YY

Binary forms of the time and date are located in TRSDOS
RAM at these locations:

X '4217' time - binary •· 3 bytes - sec,min,hrs
X • 421A • date ······ binary -· 3 bytes · yr, day, rnon

TRSDOS Technical Information

(4) Printing TRSDOS error codes on the video display.

CALL 4420H

JR Z,OKGO

OR 80H

CALL 4409H

Example of system I/0 call. Any call
is ok. Zero flag not set means an error
has occurred du1ing the I/O attempt.
Ignore error message display if no
error.
Optional for detailed error message.
Register A already contains proper
code for a single line message display.~
Display error message on video screen.

Optional user error recovery code goes here

OKGO continue with program here - - -

.._.Note: If Bit-6 is ON, a detailed message
is given. If Bit-6 is OFF, only the
error number is displayed. If Bit-7 is
ON, control is returned to the CALLing
instruction. If Bit-7 is OFF, the
return is to DOS Ready.

OR
OR

40H
COH

test 7th Bit
test Bits 6 and 7

Omitting the OR will cause the error
to be displayed and a return to DOS Ready.

MODEL III DISK SYSTEM OWNERS MANUAL
-----------TRS-BO'·f~,----------

TRSDOS Error Codes/Messages

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34

No Error Found
CRC Error During Disk I/O
Disk Drive Not In System
Lost Data During Disk I/O
CRC Error During Disk I/O
Disk Sector Not Found
Disk Drive Hardware Fault
Undefined Error Code
Disk Drive Not Ready
Illegal I/O Attempt
Required Command Parameter Not Found
Illegal Command Parameter
Time Out On Disk Drive
I/O Attempt To Non-system file
Write Fault On Disk I/O
Write Protected Disk
Illegal Logical File Number
Directory Read Error
Directory Write Error
Invalid File Name
GAT Read Error
GAT Write Error
HIT Read Error
HIT Write Error
File Not Found
File Access Denied Due to Password
Protection
Directory Space Full
Disk Space Full
Attempt to Read Past EOF
Attempt to Read Outside of File Limits
No More Extents Available
Program Not Found
Invalid Drive Number
Undefined Error Code
Attempt to Use Non-program File as
Program

---------- ladaelllaeli----------

PAGE 1 ;7

M_o_D_E_L_I_I_I_D_I_s_K_s_Y_sT_E_M ___ TRS-BD@) ______ ow_N_ER_s_MA_N_u_AL_

35
36
37

38
39
40
41

Memory Fault During Program Load
Undefined Error Code
File Access Denied Due to Password
Protection
I/O Attempt to Unopen File
Invalid Command Parameter
File Already In Directory
Attempt to Open File Already Open

----------- ladaelllaeli----------

PAGE138

-----------TRS-so@ __________ _

Part III Disk BASIC

-----------ladaelllaeli-----------

DISK
BASIC

Contents of This Section

Introduction
Enhancements
Disk Features

File Manipu1anon
File Access

Sequential Access Techniques
Random Access Techniques
DISK BASIC Error Messages

140

L
A
N
G u
A
G
E
s

DISK BASIC

Introduction
DISK BASIC is a set of enhancements to Model III , plus
features to allow disk input/output of BASIC programs and data.
It is a memory image file stored on the TRSDOS software diskette
with the name BASIC and extension /CMD.

When DISK BASIC is loaded into RAM, it automatically takes
control of the Mod.el III ROM program, using almost all of
its routines and adding others.

BASIC occupies memory beginning at hex address 5200 (decimal
20992).

To load and execute DISK BASIC, first power-up the Disk Operating
System (see System Operation), so that

DOS Ready
is displayed. Now type:

BASIC i4¢■44i1
TRSDOS will load BASIC into RAM, and BASIC will begin the
"initialization dialog". This is a series of questions and answers
which tell BASIC how to organize memory according to your needs.

The first question is,

HOW MANY FILES?■

You should respond with the maximum number of files that will
l>e open (in use) at any one time (any numDer from 1-15) and
whether or not the file is to be variable in length (see OPEN
for more details). For example:

3V
(Every program or data set you store on the disk is referred
to as a 11 file 11 • In fact, everything on the disk, including
system software, exists in the form of files.)
The number you enter tells BASIC how many disk I/0 buffers and
data control blocks to create and the V reserves adequate
buffer space. If 'n' files are to be used, then 'n' buffers
will be required.

If you simply press 1:j¢■ 1:j;1 without entering a number, BASIC
will use a default value of 3; so you'll be able to have 3 file buffers
in use at once.

1 41

Note: DISK BASIC automatically creates a buffer for loading, saving
and merging BASIC programs. This buffer exists in RAM below
any data file buffers you may request. It is always available for
program I/O, regardless of how you answer the HLES? question.

Suppose you're going to be using 2 files: 1 for inputting data,
1 for outputting data. Then you might answer 2 to the FILES?
question. However, if only 1 of these files will be open at once, then
you really only need to reserve 1 file buffer/control block.

Examples:

HOW MANY FILES? ■ 1@¢11@;1

causes BASIC to set aside zero buffers for 1/0 to disk files. You
won't be able to open files, but you will have the maximum amount
of RAM for use by your program.

HOW MANY FILES? II •Ui■l;i

tells BASIC to create 15 1/0 buffers and control blocks; you will
then be able to have 15 files open at once; however, this will reduce
your available memory by 15*290 = 4350 bytes.

HOW MANY FILES? 1j¢1jj;1
tells BASIC to use a default of 3 for the number of files to be in use
at once.

After you answer the FILES question, BASIC will ask:

MEMORY SIZE?■
Simply press 14¢114;1 without typing a number.

MEMORY SIZE? ··~••I;•
You will then have the maximum amount of RAM available for use
by BASIC.

If you will want to load and use machine language programs or
routines, you will have to protect your BASIC memory from these
machine language programs.

You would then respond with the highest memory address (in decimal
form) you want BASIC to use for storing and executing your BASIC
programs. Addresses above the number you specify will then be pro
tected from use by BASIC.

142

DISK BASIC

DISK BASIC

Example:

MEMORY SIZE? 32.~ iUihhl
causes BASIC to protect address.es above 3 2000. If you have 16K
of RAM, this means that you'll have 32767-32000= 767 bytes
protected for storing your machine language routines.

Here's how you might use your protected memory:
You can load machine-language programs or routines into high
memory, and then access these routines from DISK BAS IC via
specially defined USRn functions, or via the SYSTEM command.
These machine language routines may be loaded from tape using the
SYSTEM command, LOADed in the DOS READY mode, or placed
in memory one byte at a time using BASIC POKE
commands. If you do not reserve memory, such routines will be
destroyed during execution of BASIC statements.

Ref er to the Memory Map for decimal addresses of the various
TRS-80 memory configurations (16K, 32K, 48K).

After you answer the Memory Size? question, Disk BASIC
will display the following information:

1. Which version of Disk BASIC you are using
2. Copyright information
.3. The number of free bytes m,1ailab1e
4. The number of files the diskette contains

To exit Disk BASIC and return to the DOS Ready mode, type:

CM[>"S" iMOihl
This results in a normal return to DOS - without re-initialization of
the system. If you have a BASIC program in RAM, it will be lost, so
be sure to save it on disk or tape before using Cl\1D"S"

You can return to BASIC with program intact if you haven't changed
user memory while in TRSDOS. Use BASIC *•

Note: The following technical information explains how to protect
BASIC memory from machine language programs loaded through
TRSDOS.

DISK BASIC

Enhancements t() Model Ill BASIC
DISK BASIC adds many features which arc not disk-
related. 'T'hcv are listed below along with abbreviated descriptions.
Detailed des(:riptions follow in :1lphabclkal order.

&Jl
&.O

CMD'T'
CMIY'R"
CMD"S"
CMD"T"
DEF FN
DEF USR

[NSTR
LINE lNPUl'
MID$=

USRn

CMD"E"
CMD"D"
CMD"L"
CMD"P"

CMD"J"
CMD"Z"

CMD"C"
CMD"O"
CMD"A"
CMD"X"

Hex,Hkcima1<C\nstant prei'ix
Oddl-consl,1ni i,n:fix

Return ;1 command to TRSDOS

Start Real-ti.Irie Clock
Normal return to ·rRSDOS (jump to EXIT routine)

Turn off Real-time Clock
Define an implicit B,'\SiC-stats:rnent functiot1
Define the tntry puint for an cxt8rnal

rnad,ine·-Lrnruage routine
Inst ring fu w.:lion; find substring m target string
Input :1 linic~ from keybo:ird
Replace portion of target string (used on left

of equals jgn)

Call external routine (n==O,i,2, ... ,9/

Display previous TRSDOS error
Display directory for specified drive
Load Z-iO subroutine or program file into RAM
Check printer status
Convert calendar date
Duplicate output to Display and Printer

Delete spaces and ra'llarks from a prog·ram (compressio1
Alphabetizes (sorts) a string array only
Return to TRSDOS with error message
Cross-reference of eeserved words, string variables.
or strings in a program

1 /1 4

&Hand &O (hex and octal constants)
Often it is convenient to use hex (base 16) or octal (base 8)
constants rather than their declmal counterparts. For example,
memory addresses and byte values are easier to manipulate in hex
form. &H and &O let you introduce such constants into your
program.

&H and &O are used as prefixes for the numerals that immediately
follow them:

&Hdddd
where dddd

&Oddddd

is a 1 to 4 digit sequence composed of
hexadecimal numerals 0, 1 , ... 9 ,A,B, ... ,F.

where ddddd is a sequence of octal numerals 0, 1, ... , 7.
and &Oddddd< = 177777 decimal.
Note: The O can be omitted from the
prefix &O. Therefore &Oddddd=&ddddd.

The constants always represent signed integers.
Therefore any hex number greater than &H7FFF, or any octal
number greater than &077777, will be interpreted as a negative
quantity. The following table illustrates this:

Octal Hex Decimal

&l &Hl 1
&2 &H2 2
&77777 &H7FFF 32767
&100000 &H8000 -32768
&100001 &H8001 -32767
&100002 &H8002 -32766
&177776 &HFFFE -2
&177777 &HFFFF -1

"145

DISK BASIC

DISK BASIC

Hex and octal constants cannot be typed in as responses to an
INPUT prompt or be contained in a DATA statement. Often the
hex or octal constant must be enclosed in parentheses to prevent a
syntax error from occurring.

Examples:

PRINT &H5200,&051000

prints the decimal equivalent of the two constants (both equal
20992).

POKE &H3C00,42

puts decimal 42 (ASCH code for an asterisk) into video memory
address hex 3C00.

100 FOR l=(&H3C00) TO (&H3FFF) STEP <&H40)
200 IF A=(&H37E8) THEN A=A+1

3:00 POKE Ar., (X% AND &HFF)
Masks the most significant byte of X%1 and POKEs the result into
location A%,.

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-SQG'Bl __________ _

Model III Disk BASIC Abbreviations

Abbreviation Meaning
===========================--==---=-

<1'>

<+>

<.>

<,>

<SHIFT><+>

<SHIFT> <,J,> <Z>

Lxx

Exx

Dxx

Axxx,xxxx

List Previous Program Line

List Next Program Line

List Current Program Line

Edit Current Program Line

List First Program Line

List Last Program Line

List Program Line I XX I

Edit Program Line 'xx'

Delete Program Line 'xx'

AUTO Beginning at Line 'xxx',
Incrementing by 'xxxx'.

-----------llad•llaaeli----------
PAGE 147

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO fM _________ _

BASIC*
Return to BASIC (Keeping BASIC Program Intact)

BASIC*

BASIC * is a TRSDOS command v.rhich enables you to leave
BASIC, enter TRSDOS and return to BASIC without losing the
resident program. Variables, however, will not be retained.

If you have typed in a BASIC program and exited Disk BASIC i~
the normal manner (see CMD"A" or CMD"S"), but wish to re-enter
BASIC without losing the program, you must type in BASIC*.

After entering BASIC*, you immediately enter Disk BASIC,
by-passing the usual "Fil~" and "Memory Size" prompts.

Example

The Display contains the prompt:

DOS Ready
• • • ~ • • • • • • • • • • • • • • • • 0

Enter Disk BASIC and enter a program. When you are ready to exit
BASIC, type in:

CMD"S"

To re-enter Disk BASIC, yet retain the program, type in:

BASIC*

The normal BASIC prompt will immediately appear:

READY
>

--------- ltadNtlhaeli---------

PAGE 1 48

MODEL III DISK SYSTEM OWNERS MANUAL
-----------TRS-BO<f~-----------

You can then LIST or RUN the current program.

Sample Program

850 RESTORE: ON ERROR GOTO 8M
860 READ COMPANY$
870 PRINT RIGHT$(COMPANY$, 2): GOTO 86.8
880' END

CMD"S"

DOS Ready
.
BASIC*

READY
>

LIST
858 RESTORE: ON ERROR GOTO 8.0'6
860 READ COMPANY$
876 PRINT RIGHT$(COMPANY$, 2) : GOTO 860
886 END

®

---------- ladaelllaeli ----------

PAGE 149

MODEL III DISK SYSTEM OWNERS MANUAL
------------TRS-BO"iM'------------

CMD 11 A"
Return to TRSDOS

CMD "A"

This command allows you to return to TRSDOS from Disk BASIC.
However, the resident BASIC program can be lost (see BASIC*).

After entering the command, the message:

Operation Aborted

will be displayed.

Sample Use

When you type in:

CMD 11 A ff

the following will be displayed.

Operation Aborted

DOS Ready
.

---------- llad10/llaell----------

PAGE 150

M_o_n_E_L_r_n_: _n_r_s_K_s_Y_s_T_E_M ___ TRS-BO '.fM, ______ ow_N_E_R_s_MA_N_u_A_L_

CMD "C II

Delete Remarks and Spaces from a Program Line (Compression)

CMD"C" ,R,S
R indicates a Remark (' or : REM) in a program

line. This is an ~ption.

S indicates a Space in a program line. This is an
option.

If neither option is given, both will be used.

This command allows you to delete either spaces or remarks (or
both) from a program without re-typing each individual line.

CMD"C",R,S is especially useful when saving programs but using
as little disk space as possible in the process.

You can use either or both of the options to execute the
operation. If neither option is given, both options will be
used, deleting all spaces and remarks.

Disk BASIC remains in control after the command has been
executed.

Example

Your program reads as follows:

85e RESTORE: ON ERROR GOTO 8.0~
860 READ COMPANY$

'DOG PROGRAM
' PET s·rORE

--------- ltadaolllaeli--------

M_o_D_E_L_I_I_I_D_I_s_K_s_Y_sT_E_M ___ TRS-BO@) ______ o_WN_ER_s_MA_N_u_A_L_

87-0' PRINT RIGHT$(COMPANY$,2},: GOTO 86e
88.0 END

If you wanted to delete the Remarks (lines 85~ and 86~}, type
the command:

CMD"C" ,R

and the program would read:

858 RESTORE: ON ERROR GOTO 8-e'e
860 READ COMPANY$
87ff PRINT RIGHT$(COMPANY$,2},:GOTO 86e
880 END

If you then wanted to delete the spaces, type in:

CMD"C",S

and the program would read:

858 RESTORE:ONERRORGOT0800
860' READCOMPANY$
870 PRINTRIGHT$(COMPANY$,2},:GOT086.0
880 END

You could obtain the same results by typing in either:

CMD "C II , R , s

or

CMD"C"

Sample Program

1-0' X = 1
28 FOR X = 1 TO 1~
30' PRINT X
4ff NEXT X

CMD"C" ,R,S

LIST

'COUNTING PROGRAM
'COUNT THIS FAR

---------- ltaclaelllaeli----------
PAGE 152

M_o_o_E_L_r_r_ro_r_s_K_s_Y_s_T_E_M ___ TRS-BO TM. ______ o_w_N_E_R_s_MA_Nu_A_L_

10 X=l
20 FORX=lTO10
30 PRINTX
40 NEXTX

---------- lladtelllaeli----------

PAGE15';'.

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO@) _________ _

CMD"D"
Display the Directory of a Specified Drive

CMD"D:d"
'd' is the drive specification

By entering the command CMD"D:d", you can obtain a specified
diskette's directory from BASIC without returning to TRSDOS.

Only unprotected, non-invisible files will be displayed.

The drive specification is not optional and must be specified
for all drives, including drive 0. If you do not specify which
drive, Disk BASIC will not default to drive O; instead, a Syntax
Error message will be displayed.

Example

If you type in the command:

CMD"D: 1"

the directory for drive 1 will be displayed.

PAGE 1 54

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-BO TP-:1 _________ _

CMD"E"
Display Previous TRSDOS Error

CMD"E II

Disk BASIC will display the last TRSDOS error message displayed
whenever you type in and enter CMD"E".

After the command has been executed, you will remain in Disk
BASIC.

If no errors occurred prior to the command, the message:

No Error Found

will be displayed.

Example

If you type in:

CMD"E"

and the last TRSDOS error message displayed was an invalid drive
number error, Disk BASIC would respond with the message:

Invalid Drive Number

followed by the Disk BASIC prompt,

READY
>

----------lladtelllaeli----------
PAGE 1 5 ":

MODEL III DISK SYSTEM OWNERS MANUAL ----------TRS-BO(T'-1, _________ _

CMD" I II

Execute TRSDOS Commands from Disk BASIC

CMD"I ", "command"
'command' is a string expression containing a

TRSDOS command or a Z-80 program file name

It's possible to execute TRSDOS commands directly from BASIC by
using CMD"I".

This is similar to CMD"S", except it lets you enter a command
(operator or library) for TRSDOS to execute without first
entering TRSDOS.

It's also possible to enter Z-80 subroutines directly from BASIC
using CMD"I".

As long as BASIC is not overwritten by the execution of a
library command, control will return to BASIC; otherwise,
control will return to TRSDOS.

Example

CMD"I","BASIC PGM"

returns you to TRSDOS and executes the command file BASIC PGM.

CMD"I 11 , "DIR: 3"

returns you to TRSDOS and displays the Directory for drive 3.

-----------lbMlaelllaeli-----------
PAGE 1 56

M_o_o_E_L_rr_r_o_I_s_K_s_Y_s_T_E_M ___ TRS-SO.:fil ______ o_WN_E_R_s_MA_N_u_A_L_

CMD"J II

Calendar Date Conversion

CMD"J", source, destination
'source' is a stringvariable or expression containing

the date which needs to be converted
'destination' is a string variable containing

the converted date

conversion format can be one of the following

mm/dd/yy

-yy/ddd

to

to

yy/ddd

mm/dd/yy

where 'mm' is a two-digit number specifying the
month

where 'dd' is a two-digit number specifying the
day of month

where 'ddd' is a three-digit number specifying
the day of the year

where 'yy' is a two-digit number specifying the
year

This command enables you to convert a calendar date to one of
two specified formats.

If you need to change from a format which lists the day in terms
of the month and the year {rnm/dd/yy) to a format which numbers
that day in terms of the the year only {-yy/ddd), source would
be the string dd/mm/yy and destination would be the string
-yy/ddd.

If the date needs to be changed from a specific day in the year
{-yy/ddd) to a day of a particular month {dd/mm/yy), then the
contents of the source/destination strings would be reversed.

Example

---------- ltadlO·/haell----------
PAGE 15?

M_o_n_E_L_I_· r_r_o..ir--s_K_s_Y_sT_E_M ___ TRS-BO ,r~,, ______ o_WN_E_R_s_MA_N_u_AL_

If you need to know which day of the year October 23, 1980, is,
type in the command:

CMD"J","18/23/88",D$

Next:

PRINT D$

and Disk BASIC 1~ill return with the number of the day in the
year.

297

Conversely, if you need to know the specific date of the 313th
day of 1980, type in the command:

CMD"J", "-86/313" ,D$

Then:

PRINT D$

Disk BASIC will respotd with the correct date:

11/88/8-0'

Sample Use

READY
>CMD"J","88/12/88",D$
READY
>PRINT D$
225
READY
>

READY
>CMD"J","-64/20'1",D$
READY
>PRINT D$
fn/19/64
READY

----------lladaellaeli----------
PAGE 158

M_o_o_E_L_r_r_r_o_1_s_K_s_Y_s_T_E_M ___ TRS-BO ct:~) ______ o_w_N_E_R_s __ MA ___ N_u_A_L __

CMD"L"
Load Z-80 Routine into RAM

CMD "L", routine
'routine' is a string expression containing a

file specification for a Z-80 routine or program
created by the DUMP command. If 'routine' is a string
constant, it must be enclosed in quotes.

CMD"L" loads a Z-80 ("machine-language") routine into RAM. This
would normally be used to load a Z-80 subroutine which is to be
accessed directly from BASIC.

The Z-80 routine should load into high-RAM and must not overlay
the memory protect area reserved when you first entered BASIC
(i.e., the Memory Size? prompt).

Example

The command:

CMD"L","PROG"

will load a progam file named PROG into RAM.

CMD"L II, P$

will load a file which has been specified as P$.

-----------ladaolltaeli-----------
PAGE 159

M_o_D_EL_r_r_r_D_rs_K_s_Y_sT_E_M ___ TRS-SC)@ ______ oWN_E_R_s_MA_N_u_AL __

CMD"O"
Alphabetize (Sort) Array Contents

CMD"O"x,y$

•x• is an integer variule whose value is the num'ber of itaiu
which is to be sorted

'y$' is the point where the sorting 'begins (i.e., the string 2
name

The contents of simplestrings (whose contents are stored in
resident memory) can be alphabetized (sorted) by using the
CMD"O" command.

'x', the number of items in the string, must be an integer
variable'y$' specifies the point at which the alphabetizing is
to begin.

Disk BASIC remains in control after the operation has been
executed.

Example

Suppose you had a list of six names which needed to be
alphabetized. Include the command

CMD "O", N%,A$ (l)

in the program and Disk BASIC will alphabeti.ze the list.

Sample Program

18' DEFINT N:N=6
28' DATA BILL, ABE, DEBBIE, FRANK, CARL, MIKE
36 FOR I=l TON: READ A$(I):PRINT A$(I);" ";:NEXT I
40' PRINT

-----------llM11elllaeli----------
PAGE 160

M_o_D_E_L_I_I_ID_I_s_K_s_Y_s_T_E_M ___ TRS-BO@) ______ o_WN_E_R_s_MA_N_u_A_L_

58 CMD"O",N,A$(1)
68 FOR I::::: 1 TON: PRINT A$(I);" ";:NEXT I

RUN

BILL, ABE, DEBBIE, FRANK, CARL, MIKE
ABE, BILL, CARL, DEBBIE, FRANK, MIKE

----------bdaelllaeli----------
PAGE 161

MODEL III DISK SYSTEM OWNERS MANUAL -------------TRS-BO@) ___________ _

CMD"P"
Check Printer Status

CMD"P",status
'status' is a string variable

CMD"P" makes it possible for Disk BASIC to check the status of
the printer.

Unlike the Video Display, the printer is not always available.
It may be disconnected, off-line, out of paper, etc. In such
cases, when you try to output information to the printer, the
Computer will wait until the printer becomes available. It will
appear to "hang up". To regain keyboard control (and cancel the
printer operation), press <BREAK>.

Suppose you have a program which uses printer output. If a
printer is not available, you don't want the Computer to stop
and wait for it to become available. Instead, you may want to
print a message such as "PRINTER UNAVAILABLE" and go on to some
other operation.

To accomplish this, you need to check the printer status.
CMD"P" can be used to check the printer's status at any time. It
returns the contents as an ASCII-coded decimal number. The
specific value of this number depends upon the type of printer
you are using as well as its status at any particular time. The
value may then be printed or examined by the program.

Only the four most significant bits are used in this "status
byte". In binary, these must be: "0011" or else the print
operation will not be attempted. To check for this "go"
condition, AND the status byte with 240 and compare the result
with 48. The meaning of each status bit depends on which printer
you use. See the printer owner's manual for bit designations.

-----------llad•lbaeli-----------
PAGE 1 Fi2

MODEL III DISK SYSTEM OWNERS MANUAL ------------TRs-eo@) ___________ _

Sample Use

1.0 CMD"P" ,X$
20 ST%= VAL(X$) AND 24,6
30 IF ST%<> 48 THEN PRINT "PRINTER UNAVAILABLE": STOP
40 PRINT "PRINTER AVAILABLE"
50 REM PROGRAM MAY NOW CONTINUE

-----------llaflao.lllaeli----------
PAGE 163

M_o_n_E_L_I_I_I_o_r_s_K_s_Ys_T_E_M ___ TRS·SO''i1!i: _____ o_WN_E_R_s_MA_N_u_A_L_

CMD"R"
Turn On Clock-Display

CMD"R"

This command controls the real-time clock display in the upper
right corner of the Video Display. When it is on, the 24-hour
time will be displayed and updated once each second, regardless
of what program is executing.

Note: The real-time clock is always running (except during
cassette or disk I/0), whether or not you set the time when you
turned the system on and whether or not the display is on or
off.

Example

To turn on the clock display, type in:

CMD"R II

----------ltadaolllaeli----------
PAGE 164

M_o_D_E_L_I_I_I_D_I_s_K_s_Y_s_T_E_M ___ TRs-eo@ ______ o_WN_E_R_s_MA_NU_A_L_

CMD"S"
Return to TRSDOS

CMD"S"

To exit Disk BASIC, returning control to TRSDOS, simply type in
the command:

CMD"S"

No further message will appear except for the TRSDOS prompt. The
resident BASIC program, however, can be lost (see BASIC*).

Example

The BASIC prompt lets you know you are in Disk BASIC.

READY
>

To exit, type in:

CMD"S"

and the TRSDOS prompt will appear.

DOS Ready
.

Sample Program

READY

-----------ladlelllaell----------
PAGE 165

M_o_o_E_L_r_r_r _o_r_s_K_s_Y_s_T_E_M ___ TRS-BO ,Ji;. ______ o_w_N_E_R_s_MA_N_u_A_L_

>
CMD"S"
DOS Ready
.

---------- lladaelllaell----------
PAGE 166

MODEL III DISX SYSTEM OWNERS MANUAL ------------TRs-eo@ __________ _

CMD 11 T11

TUrn Off Clock-Display

CMD 11 T 11

This command stops the updating of the real-time clock display
in the upper right corner of the Video Display.

The clock continues to run, however, regardless of whether or not
the Display has been stopped with CMD 11 T11 •

Example

To stop the clock display update type:

CMD 11 T"

MODEL III DISK SYSTEM OWNERS MANUAL ----------TRs-soL•., _________ _

CMD"X"
Cross-referene of Program Lines

CMD "X", tag
I tag I is one of the following options:

reserved word
variable
string variable (must be enclosed in

quotes)

CMD"X" allows Disk BASIC to cross-reference and list the line
number of the program lines which contain specified reserved
words, string variables, or strings.

Furthermore, the cross-reference will be automatically output to
the printer, if a printer is available.

Quotation marks around the tag cannot be included if the tag is
a reserved word (such as GOTO, AND, etc.) or if the tag is a
variable which has been previously been assigned a value (such
as A$= "mailing list").

Quotation marks around the tag must be included if the variable
is either string or literal or if a reserved word is used
inside a print statement.

After the command has been typed in, the line number will be
displayed as a five-digit number with leading zeros (if
applicable}.

After the command has been executed, control returns to Disk
BASIC.

Example

Your program reads as follows:

---------- llad1e111aell----------
PAGE 168

M_o_D_E_L_I_I_I_D_I_s_K_s_Y_sT_EM ____ TRS•BD@) ______ o_WN_E_R_s_MA_N_o_A_L_

853 RESTORE: ON ERROR GOTO 86a
860 READ COMPANY$
870 PRINT RIGHT$(COMPANY$, 2),: GOTO 860
886 END
890 PRINT "GOTO 86.0"

If you request a cross-reference of all lines which contain the
reserved word GOTO, type in:

CMD II X" , GOTO

and Disk BASIC will respond:

.09850 ..0.9'870'

If you request a list of the lines which contain the statement
END, the display will be:

.0.0880

If you want a list ·of the lines which contain the word GOTO used
within quotes (i.e., not as a reserved word) you must type in:

CMD"X", "GOTO"

and the Display will respond:

.8.0'890'

Sample Program

1.0' X = 1
2e FOR X = 1 TO 18
38 PRINT X
4.0 NEXT X

CMD"X" ,PRINT

00.038'

-----------·bdlellllleli-------------
PAGE 169

M_o_D_F.L_I_I_I_o_r_s_K_SY_S_T_E_M ___ TRS•BO@ _____ o_WN"""""""E111111R_S....,.MA_N_U_AL ___ _

CMD 11 Z II
Duplicate Output to Video and Printer

CMD 11 Z II

This command enables all video output to be copied to the
printer.

To turn CMD 11 Z11 off, re-type the command.

Video and printer output may be different because of intrinsic
differences between output devices and output software.

Using the command will slow down the video output process.

Example

After typing in:

CMD"Z II

program lines such as the following will be simultaneously
displayed on the Video and Printer as each line is entered.

85i RESTORE: ON ERROR GOTO 868
868 READ COMPANY$
870 PRINT RIGHT$(COMPANY$, 2),: GOTO 86g
880 END

-----------ladlelllaeli-----------
PAGE 170

DEF FN (derme function)

DEF FN varl(var2[,var ...]) = exp

where var I will be the name of the function, and is any
valid variable name

var2 and subsequent var-items are
used in defining what the function does

exp is an expression usually involving the variable(s)
passed on the left of the equals sign

This statement lets you create your own implicit functions. That
is, you only have to call it by name and the implicit function you
defined will automatically be performed. Once a function has been
defined with the DEF FN statement, you can call it simply by
referencing the function name prefixed by FN. You can use it
exactly as you'd use one of the intrinsic functions, e.g., SIN, ABS,
STRING$.

The type of variable used to name the function determines what type
of value the function will return. For example, if the function name
has the single-precision attribute, then that function will return a
single-precision value - regardless of the precision of the arguments.

Examples:

DISK BASIC

DEFFNA$(TITLE$,GRAPHICS%)=5TRING$(LEH<TITLE$),GRAPHICS%)

The function A$ will require two arguments - one integer, one
string; and it will return a string value.

DEFFNRC!(A)=1/(A*A)

The function RC! requires one argument, and returns a single
precision value, regardless of the precision of the argument.

The particular variable names you use as arguments in the DEF FN
statement are not assigned to the function; when you call the
function later, any valid variable name of the same type can be
used. Furthermore, using a variable as an argument in a DEF FN
statement has no effect on the value of that variable.

The function must be defined with at least one argument - even if
this argument is not actually used to pass a value to the function.
For example:

DEF FNR(A)=RND<0>

171

DISK BASIC

Examples:

10 DEFFNMLT<A,Bl •A* 8
20 INPUT "ENTER ARGUMENTS"; X,Y
30 PRINT "PRODUCT IS"I FNMLTIX,Yl

Notice that FNMLT is defined with arguments A,B, but that when
the function is called· in line 30, variables X and Y are used. Any
two valid variable names can be used to pass values to the function.

DEF FNR(A,B) :::: A+INT(<B·-(A·-1 l >•RND(0) l Returns a random
number between
A and B.

DEF FNL.8$ (A$) LEFT$ (A$' 8) Returns first 8
characters of string
argument

DEF FNX# < A#, B# > < A#·"·B# > • < A#·B# l Returns double
precision value of "the
square of the
difference"

100' PROGRAM: STRING
110' EXAMPLE OF A STRING DEFFN FUNCTION
120'
130' ******* FUNCTION TO CONCATENATE STRINGS********
135 '
140 DEF FNADDS IAt, BSl =A$+" " + 8$
150 CLS: PRINT TAB<15ll "STRING DEFFN EXAMPLE"
160 PRINT: FS = "": INPUT "ENTER FIRST NAME"; F$
165 IF FS z "" THEN END
170 INPUT "ENTER LAST NAME"; L.$
1B0'
190' ******* ADD F$ TO L$ WITH 1 BLANK IN BETWEEN*******
200'
210 2$ = FNADD$ (F$, l$)
220 PRINT TABl6ll "FULL NAME:
:;::30 GOTO 160

II; Z$

r •11¢111;1

STRING DEFFN EXAMPLE

ENTER FIRST NAME? lali4¢111;1
ENTER LAST NAME? Ill i1¢114i1

FULL NAME: JOHN DOE

172

100 ·' PROGRAM : M rnMA:=<
110 ,. E}<AMPLE OF ()EFFN FEATURE
120 .,

130 ·' ******* DEFINE MIN AN() MAX FUNCTIONS *******
135
14i3 (;EF FNMIN (A., B) = (A + B - ABS (A - B)) / 2
150 DEF FNMAX (A., 8) = <A + B + ABS (A - 8)) / 2
160,.

DISK BASIC

170 ,. ******* READ 1ST VALUE - CALL IT THE MIN AN() MA:X: *****
180 ·' MN IS CURRENT MINIMUM VALUE
190 M:X: 1 S CURRENT MAX I MUM VALUE
200 .,
210 READ MN: MX = MN
220.,

23:0 ,. ******* GET NEXT VALUE ANO FIND NE~t MIN/MAX ********
240 .,

250 REA[) V: IF V = 99999 THEN 12€1 ,.V=99999 MEANS ALL DONE
260 MN = FNMIN (MN., V) ·'GET t~EH MINIMUM
270 MX = FNMAX (M:>::., V) ·'GET NEW MAXIMUM
280 GOTO 25€1
290 .,

J:0(1 ,. ******** PRINT RESULTS *******
J:10 .. •

J:20 PRINT "MINIMUM VALUE =" .• MN
130 PRINT "MA~<:IMUM VALUE =".• M~<
340
350 ·' ******* DATA FOLLOWS - LAST VALUE MUST BE 99999 *******
J:E,0 ·'
3:70 C:•ATA 1. 2, 2., J:.. 4. 7, 5. J:3:2., 0. 314, 6., 7., 8. J.. 9. 57., 99999

)fllf 14~114;1
MINIMUM VALUE = . 3:14
MA)m11JM VALUE = 9. 57
REA[>'-r'
> Bl~fBIJi.1■:~il¥~f11i1r0lii,~1?fi~11l~1-~•l•!.1fi1lk~1i~f.:1;1lBi\H11~MB •l~i•4;•
:>111 l:J~ll#t;I
MINIMUM VALUE = -1
MAXIMUM VALUE= 9
READ'-r'
)_

173

DISK BASIC

DEFUSR
(defme entry address for USR routine)

DEFUSRn=nmexp

where n equals one of the digits 0, 1, ... ,9;
if n is omitted, 0 is assumed

nmexp specifies the entry address to a
machine-language routine.

This statement lets you define the entry points for up to 10 machine-
language routines. (Where only one USR routine is
available, the entry point address is POKEd into RAM.)

Example:

100 DEFUSR3=&H7D00

Assigns the entry point 7D00 hex, 32000 decimal, to the USR3 call.
When your program calls USR3, control will branch to your sub
routine beginning at hex 7D00.

Here are three ways to get a machine language program into RAM so
that it can be accessed via a USRn call:

1) Use the TRS-80 Editor Assembler
to convert the source code into an object

file on tape; then load the tape under the SYSTEM
command (use MEMORY SIZE to protect the code from
destruction by BASIC).

2) Use the TRSDOS DEBUG program to type in the machine
code routine (then DUMP it to disk for safe-keeping);
call DISK BASIC and answer MEMORY SIZE to
protect the routine.

3) Have your DISK BASIC routine POKE the routine (decimal
values for each byte) into high RAM. MEMORY SIZE
should be set during initialization to protect the area you
will POKE into.

See USRn.

174

INSTR (string search function)

INSTR([n,] exp] $,exp2$)

where n specifies a position in exp 1 $ where the
search is to begin; if n is not supplied,
1 is assumed. (Position 1 is defined as
the first character in the string.)

expl $ is the string to be searched
exp2$ is the substring you want to search for

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of the
substring in the target string; otherwise zero is returned. Note that
the entire substring must be contained in the search string, or zero
is returned. Also note that INSTR only finds the first occurrence of
a substring, starting at the position you specify.

Examples (let A$=" ABCDEFG"):

Expression

INSTR(A$,"BCD")
INSTR(A$,"l 2")
INSTR(A$ 'II ABCDEFGH")
INSTR(3 ," 123 2123 "," 12")

Result

2
0
0
5

See the EDIT program under MID$= for a sample use of INSTR.

175

DISK BASIC

DISK BASIC

LINE INPUT (input a line from keyboard)

LINE INPUT["prompt"l ;Far$

where prompt is a prompting message

vart is the name that will be assigned to the line you
type in

LINE INPUT (or LINEINPUT -- the space is optional) is similar to
INPUT, except:

• When the statement is executed, and the Computer is waiting for
keyboard input, no question mark is displayed

• Each LINE INPUT statement can assign a value to just one variable
• Commas and quotes will be accepted as part of the string input
• Leading blanks are not ignored - they become part of Far$
• The only way to terminate the string input is to press 14¢u4i1
LINE INPUT is a convenient way to input string data without having
to worrv about accidental entry of delimiters - because only the
'8~118;1 key serves as a delimiter. If you want anyone to be able to
input information to a program without special instructions, use
LINE INPUT and then analyze the resultant shing.

Some situations require that you input commas, quotes and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:

LINE INPUT A$
Input A$ without displayi11g any prompt.

LINE INPUT"LflST NAME, FIRST NAt1E?";N$
Displays a prompt message and inputs data. Commas will not termi~
nate the input string.

Try the following program to get the idea of LINE INPUT.

100 ., PROGRAM: UHNPLIT
110 ✓ EXAMPLE OF LINEINPLIT STATEMENT
120 ,·
130 CLEAR 3:00: CLS
140 PRINT TAB(15); "LINE INPUT STATEMENT": PRINT
150 PRINT: PRINT"*** ENTER TEXT***"
151 ✓

152 ., *** GET STRING, THEN PRINT IT ***
153.,
155 A$="" ✓ sET A$ TO NULL STRING

176

160 LINE INPUT 11 ==) 11 ; A$
165 IF A$=" 11 THEN END ,.IF STILL NULL STRING, STOP!
170 PRINT A$
180 GOTO 155

(
••Ui■li•

LINE INPUT STATEMENT

*** ENTER TEXT***
==) IBlflalali! l!iii!il! IIII!LIH!II

,
,,

DISK BASIC

'
ill!IIII ··1 I!! I . !lmlLI . ll!iil . 1111 I JIiii! i 11 11 cmm

EXAMPLE TEXT
THIS TEXT HAS EMBEDDED LINE FEEDS AND TABS
IN IT. LINEINPUT ALSO ALLOWS DELIMITER (, :; .. ,. ETC).
==) 11¢1113
READY
)_

MID$= (replace portion of string)

MID$(var$,nl [,n2]) = exp$

where var$ names the string to be changed
nl specifies the starting position for the

replacement
n2 specifies how many characters are to be

replaced; if n2 is omitted, LEN(exp$) or
LBN(var$)-nl+l is used, whichever is
smaller.

This statement lets you replace any part of a string with a specified
substring, giving you a powerful string-editing capability.

Note that the length of the target string (var$) is never changed by
the MID$= statement. If the replacement string, exp$, is too long
to fit in the specified portion of var$, then the extra characters at
the right of exp$ are ignored.

177

DISK BASIC

However, if you specify the number of characters to be replaced,
and this number is larger than the replacement string, then the
length of the replacement string overrides the length you specified.

A$="ABCDEFG" at the beginning of each example below:

Ex.# Expression Resultant A$

2
3
4
5

MID$(A$,3,4)=" 12345"
M1D$(A$, 1,2)=""
M1D$(A$,5)=" 12345"
MID$(A$,5)="01"
MID$(A$, 1,3)="* **"

AB1234G
ABCDEFG
ABCDI 23
ABCDOlG
***DEFG

In example 2, the specified replacement length exceeds the length
of the replacement string (which is zero); therefore the replacement
string length is used. In effect, no characters are replaced.

Sample program: EDIT

This program accepts an initial string, asks for a target string
and a replacement string. Then it performs the MID$= replacement
and prints the new string. Type in a position equal to zero to stop
the program.

100 ,· PROGRAM : ED IT
110 ,. £::<AMPLE OF INSTR FUNCTION FOR TEXT EDITTING
115 .. ·
120 CLEAR 800: CLS
130 PRINT TAB(15); " STRING-FUNCTION EDITOR"
BS
140 ..- ******* GET INITIAL TE>::T *******
145'
150 PRINT: PRINT "ENTER INITIAL TEXT STRING"
160 5$= 1111 : LI NE INPUT 5$: IF 5$= 11 11 THEN EN()
165 ·'
170 ·' ******* GET TARGET & REPLACEMENT STRINGS *******
175.,.
180 T$=" 11 : PRINT: LINE INPUT" TARGET STRING 11 ; T$
185 IF T$= 1111 THEN EN()
190 LINE INPUT "REPLACEMENT STRING 11 .• R$
195 IF LEN(T$)OLEN(R$HHEN PRINT"CAWT CHANGE STRING LENGTH":

GOTO 180
200 ·' ******* MAKE REPLACEMENT<S) AND PRINT NEW STRING *****
210 I=1 ·'VARIABLE I POSITIONS TO BEGINNING POINT OF SEARCH
220 I= INSTR (L 5$, T$) : IF I =0 THEN 150 ·' I =0 IF NOT FOUND
210 MI[)$(S$, D=R$ ••'MAKE REPLACEMENT
240 PRINT "POSITION - 11 ; I: PRINT 5$
250 I=l+LEN(R$): GOTO 220 "ADVANCE POSITION

178

r ,
STRING-FUNCTION EDITOR

TARGET STRING 'i;JIJ8'•i 13¢uj;j
REPLACEMENT STRING .illa,i i*H:Jii
POSITION - 9

DISK BASIC

CHANGE "DISK" TO "MSK" EfiCH TIME IT OCCURS ... <DISC=)DISK)
POSITION - 48
CHANGE "DISK" TO "DISK" EACH TIME IT OCCURS ... ([)ISK=)DISK)

ENTER INITIAL TEXT STRING iiRil@;f

READY
)_

USRn (call to user's external subroutine)

USR[n] (nmexp)

where n specifies one of ten available USR calls,
n=O, 1,2, ... ,9. If n is omitted, zero is
assumed.

nmexp is in the range< -32768 +32767> and
is passed as an integer argument to the
routine

These functions (USRO through USR9) transfer control to machine
language routines previously defined with DEFUSRn statements.

When a USR call is encountered in a statement, control goes to the
address specified in the DEFUSRn statement. This address specifies
the entry point to your machine-language routine. A RET or JP
OA9A instruction in the routine returns control to the lJSR call in
your BASIC program.

179

Note: If you call a USRn routine before defining the routine entry
point with DEFUSRn, an ILLEGAL FUNCTION CALL error will
occur.

You can pass one argument and retrieve one output value directly
via the USR argument; or you can pass and retrieve arguments
indirectly via POKE and PEEK statements.

Example:

10 DEFUSR1=&H7D00
20 REM ... MORE PROGRAM LINES HERE
100 A=USR100

The effect of this sequence is to:

1) Define USRI as a routine with an entry point at hex 7D00
(line 10)

2) Transfer control to the routine; the value X can be passed
to the routine if the routine makes the CALL described
below (line l 00)

3) When the routine returns to BASIC, the variable A may
contain the value passed back from the routine (if your
routine makes the JUMP described below); otherwise A
will be assigned the value of X (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between
your BASIC main program and your USR routines: the two major
ways are listed below.

1. POKE the argument(s) into fixed RAM locations. The
machine-language routine can then access these values and
place results in other RAM locations. When the routine
returns control to BASIC, your program can PEEK into
these addresses to pick up the "output" values. This is
the only way to pass two or more arguments back and
forth.

2. Pass one argument to the routine as the argument in the
USRn call, then use special ROM calls to access this
argument and return a value to BASIC. This method is
limited to sending one argument and returning one value
(both are integers).

180

DISK BASIC

DISK BASIC

ROM Calls

CALL OA 7FH Puts the USR argument into the HL register pair;
H contains msb, L contains lsb. This CALL should
be the first instruction in your USR routine.

JP 0A9AH Use this JUMP to return to BASIC; the integer in
HL becomes the output of the USR call. If you
don't care about returning HL, then execute a
simple RETum instruction instead of this JUMP.

181

DISK BASIC

Listed below is an assembled program to white out the display (an
"inverse" CLEAR key!).

7D00

3C00
00BF
03:FF

00100 ;
00110 ., ZAP OUT SCREEN LISR FUNCTION
00120 .:
00130
00140 _;

ORG

00150; EQUATES
00160 ;
00170 VIDEO
00180 WHITE
00190 COUNT
00200 ;

EQU
EQU
EQIJ

7D00H

3C00H
0BFH
3FFH

.: START OF VIDEO RAM
; ALL WHITE GRAPH I CS BYTE
; NUMBER OF BYTES TO MOVE

7D00 21003:C
7003 36BF
7D05 11013:C
7D08 01FF03
7[>0B EDB0

00210 ; PROGRAM CHAIN MOVES ::<·'BF-'
00220;
00230 ZAP LD

LD
LD
LD
LDIR

HL, VIDEO
(HL), WHITE
DE, VIDE0+1
BC:,COUHT

INTO ALL OF VIDEO RAM

; SOURE ADDRESS

7D0D C9
7D00

00240
00250
00260
00270
00280 .•
00290
00300

RET
END ZAP

This routine can be POKEd into RAM and accessed as a USR
routine, as follows.

182

., PUT OUT 1ST BYTE
;DESTINATION ADDRESS
;NUMBER OF ITERATIONS
.: DO IT TO IT ! ! !

; RETURN TO BASIC

DISK BASIC

100 ,. PF:OGRAM : USR1
110" EXAMPLE OF A USER MACHINE LANGUAGE FUNCTION
115 ,. DEPRESS THE "@" l<E'r' WHILE NUMBERS ARE PRINTING TO STOP
120.,
B0 ,. ******* POKE MACH I NE PROGRAM INTO MEMOR'r *******
140,.
150 DEFUSR1 = &H7D00
160 FOR X = 3:2000 TO 3:2013: -'7D00 HEX EQUAL 3:2000 DECIMAL
170 READ A
180 POKE X., A
190 NEXT X
192,.
194,. ******* CLEAR SCREEN & PRINT NUMBERS 1 THRU 100 *******
196,.
200 CLS
205 PRINT TAB(15); "~JHITE-OUT USER ROUTINE": PRINT
210 FOR :ic: = 1 TO 100
220 PR INT X.:
225 A$ = INKEY$: IF A$ = "@" THEN END
23:0 NEXT X
240.,
250 ·' ******* JUMP TO WHITE-OUT SUBROUTINE *******
260.,
270 X = USR1 (0)
280 FOR X = 1 TO 1000: NEXT X ,.DELAY LOOP
290 GOTO 200
3:00 .,
3:10,. ******* DATA IS DEMICAL CODE FOR HEX PROGRAM*******
3:20 .,
3:30 DATA 3:3:, 0, 60, 54,255, 17, 1, 60., 1,255, 3:, 23:7, 176, 201

RUN the program. An equivalent BASIC white out routine takes
a long time by comparison!

183

DISK BASIC

Disk-Related Features

Programs and data are stored as "files" under TRSDOS.
Bach program or data-set on the disk has its own, distinct
file specification•-which includes a name plus identifying
information.

Before attempting any disk I/0--including loading and
saving BASIC programs, refer to the TRSDOS section and
the Notations described under Operation.

DISK BASIC provides a powerful set of commands, statements and
functions relating to disk 1/0 under TRSDOS. These fall into two
categories:

1. File manipulation: dealing with files as units, rather than
with the distinct records the files contain.

2. File access: preparing data files for 1/0; reading and
writing to the files.

Commands discussed under "File Manipulation":

KILL

LOAD
MERGE

RUN"program"

SAVE

delete a program or data ftle
from the disk
load a BASIC program from disk
merge an ASCII-format BASIC
program on disk with one
currently in RAM
load and execute a BASIC
program stored on disk
save the resident BASIC program
on disk

184

Statement and functions discussed under "File Access":

Statements

OPEN

CLOSE
INPUT#
LINE INPUT#

PRINT#
GET

PUT

FIELD

LSET

RSET

Functions

CVD

CVI

CVS

EOF

LOF

MKD$

MK1$

MKS$

Open a file for access (create the
file if necessary)

Close access to the file
Read from disk, sequential mode
Read a line of data, sequential

mode
Write to disk, sequential mode
Read from disk, random access

mode
Write to disk, random access

mode
Assign field sizes and names to

random access file buffer
Place value in specified buff er

field, add blanks on the right
to fill field

Place value in specified buff er
field, add blanks on the left
to fill field

Restore double-precision number
to numeric form after GETting
from disk

Restore integer to numeric form
after GETting from disk

Restore single-precision number
to numeric form after
GETting from disk

Check to see if end of file
encountered during read

Retum number of last record in
file

Convert double-precision number
to string so it can be PUT
on disk

Convert integer to string so it can
be PUT on disk

Convert single-precision number
to string so it can be PUT
on disk

185

DISK BASIC

DISK BASIC

File Manipulation
KILL (delete a file from the disk)

KILL exp$

where epx$ defines a file specification for an existing file

This command works like the TRSDOS KILL command -- see
TRSDOS Library Commands.

Example:
KILL"OLDFILEIBflS. PSW1
deletes the file specified from the first drive which contains it.

Do not KILL an open file, or you may destroy the contents of the
diskette. (First CLOSE the open file.)

LOAD (load BASIC program file from disk)

LOAD exp$ [,R]

where exp$ defines a filespec for a BASIC program file stored
on disk

R tells BASIC to RUN the program after.it is
loaded

This command loads a BASIC program file into RAM; if the R
option is used, BASIC will proceed to RUN the program
automatically; otherwise, BASIC will return to the command
mode.

LOAD without the R option wipes out any resident BASIC program,
clears all variables, and closes all open files. LOAD with the R
option deletes the resident program and clears all variables, but does
not close the open files.

LOAD with the R option is equivalent to the command RUN exp$,R.
Either of these commands can be used inside programs to allow
program chaining - one program calling another, etc.

If you attempt to LOAD a non-BASIC file, a DIRECT STATEMENT
IN FILE or LOAD FORMAT ERROR will occur.

186

Examples:

LOAD"PROG 1 /BAS: 2" Clears resident BASIC program and
loads PROG 1 /BAS from drive 2;
returns to BASIC command mode.

10 REM ... INSTRUCTIONS Example of chaining two programs
- the first may be used to give
instructions and then to load the
"working" part of the program

1000 LOAD"PROG2/BAS",R (PROG2/BAS). Note that line
1000 is equivalent to:
1000 RUN"PROG2/BAS", R

MERGE
(merge disk program with resident program)

MERGE exp$

where exp$ defines a filespec for an ASCII-format BASIC
disk file, e.g., a program saved with the
A-option.

MERGE is similar to LOAD - except that the resident program is
not wiped out before the new program exp$ is loaded. Instead,
exp$ is merged into the resident program.

That is, program lines in exp$ will simply be inserted into the
resident program in sequential order. If line numbers in exp$
coincide with line numbers in the resident program, the resident lines
will be replaced by those from exp$.

DISK BASIC

PROGRAM IN DISK PROGRAM IN RAM MERGED PROGRAM IN RAM

10

20 20

30 30

PROGRAM LINE NUMBERS + 40

50 - 40 - 50

60 60

70 70

90

187

DISK BASIC

MERGE provides a convenient means of putting rnodular programs
together. For example, an often-used set of BASIC snbroutines can
be tacked onto a variety of programs with this cmnmand.

For example, suppose the following program is .in RAM:

10 REM ... MfiIN PROGRAM
2ft GOSUB 1000
30 REM ... MORE PROGRAli L l NES HERE
999 END
1000 REM ... NEE[) TO ADD SUBROUTINES HERE
1010 REM ... 50 USE MERGE COMMAND
1020 PRINT"SUBROUTINE NOT AVAILABLE" :RETURN

And suppose the following program is stored on disk in ASCH format:

iti00 REM .. BEGINNING CIF SUBROUTINE
1010 PR INT II EXECUTING SUBROUTINE. . . "
1020 REM ... MORE PROGRAM LINES HERE
1100 RETURN

Assuming the subroutine program is named SUB/TXT, then we
could MERGE it with the statement:

MERGE"SUB/TXT"
and the resultant program in RAM would be:

10 REM ... MAIN PROGRAM
20 GOSIJB 1000
10 REM ... MORE PROGRAM LINES HERE
999 END
1000 REM ... BEGINNING OF SUBROUTINE
1010 PRINT"EXECUTING SUBROUTINE ... "
1020 REM ... t10RE PROGRAM LINES HERE
1100 RETURN

Note that MERGE doses all files and clears all variables. Upon
completion, BASIC returns to the command mode.

188

RUN''program"

(load and execute a program from disk)

RUN exp$ [,R]

where exp$ defines the filespec for a BASIC program
stored on disk. R leaves open files open

If the R-option is not selected, all open files will be closed.

When the command is executed, any resident BASIC program will
be replaced by the program contained in exp$.

Suppose you save the following program on disk with the name
"PROG 1 /BAS":

1€1 PR INT II PROG1 EXECIJTI HG. . . II

20 RIJN"PROG2/BfiS"

And save this program on disk with the name "PROG2/BAS":

10 PR INT II PROG2 EXECUTING. . . 11

20 RUN"PROG1/6'flS 11

Now type:
RLIH"PROG1/BA5 •*0:j;I
and you'll see a simple example of program chaining.
Hold down the BREAK key to interrupt the program chain.

SAVE (save program onto disk)

SA VE exp$ [,A]

where exp$ defines the file-name and optional
extension, password, and drive to be used.
If the file-name already exists, its previous
contents will be lost as the file is re-created.

A causes the file to be stored in ASCII rather
than compressed-format.

This command lets you save your BASIC programs on disk. You can
save the program in compressed or ASCll format.

189

DISK BASIC

DISK BASIC

Using compressed-format takes up less disk space and is faster during
both SAVEs and LOADs. This is the way BASIC programs are
stored in RAM.

Using the ASCII option makes it possible to do certain things that
cannot be done with compressed-format BASIC files.

Examples:

•

•

•

The MERGE command requires that the disk file be in
ASCII form.
You can use the TRSDOS commands LIST and PRINT with
ASCU-fom1at files.
Programs which read in other programs as data will typically
require that the data programs be stored in ASCII.

Useful conventions for placing extensions on BASIC programs:
For compressed-fom1at programs, use the extension /BAS.
For ASCII fom1at programs, use the extension /TXT.

Examples of SA VE command:

SAVE"FILE1/BAS. JOHNQDOE:3"
saves the resident BASIC program in compressed-format with the
file name FILE1, extension /BAS, password .JOHNQDOE; the
file is placed on drive : 3.

SAVE"MATHPAK/TXT",A
saves the resident program in ASCII form, using the name
MA THPAK/TXT, on the first non write-protected drive.

Upon completion of a SA VE, BASIC returns in the command mode.

190

File Access
This section is divided into four parts:

1) Creating files and assigning buffers - OPEN and CLOSE
2) Statements and functions
3) Sequential 1/0 techniques
4) Random 1/0 techniques.

If this is your first experience with disk file access, you should
concentrate on parts 1, 3 and 4, perhaps just skimming through
part 2 to get a general idea of how the functions and statements
work. Later you can go back to part 2 and learn the details of
statement and function syntax.

Creating files and assigning buffers
During the initialization dialog, you type in a number in response to
HOW MANY FILES? The number you type in tells BASIC how
many buffers to create to handle your disk accesses (reads and
writes).

Each buffer is given a number from 1 to 15. If you type:

HOW MANY FILES? JV 14¢118;1
then BASIC sets aside 3 . buffers, numbered 1,2,3.

You can think of a buffer as a waiting area that data must pass
through on the way to and from the disk file. When you want to
access a particular file, you must tell BASIC which buff er to use
in accessing that file. You must also tell BASIC what kind of
access you want - sequential output, sequential input, or random
input/output.

All this is done with the OPEN statement, and "undone" with the
CLOSE statement.

191

DISK BASIC

M_o_n_E_L_r_r x_o_. r_s_K_. _s_Y_s_T_E_M ___ TRS-BO ,,,,,, ______ o_w_N_E_R_s_MA_N_uA_L_

OPEN
Assign Buffer to a File and Set Mode

OPEN "expl$", nmexp, "exp2$ 11 , n
'exp1$' is a string expression or constant.

Only the first character is
significant; this character specifies
the mode in which the file is to be
opened:

expl$= access mode
====:=~==================:===~=--==-====
I
0
R

sequential input
sequential output
random I/0

Note: Must be enclosed in quotes.

'nmexp' has a value from 1-15, and tells BASIC
which buffer to assign to the file
specified by exp2$

'exp2$' defines a TRSDOS file specification
(Must be enclosed in quotes.)

•n• specifies the nunfuer of bytes in one logical record
and is a decimal number between 1-256. If zero, 256
used. This number cannot exceed the number specifiec
FIELD and is only valid for Random length files.

This statement makes it possible to access a file. expl$
determines what kind of access you'll have via the specified
buffer; nmexp determines which buffer will be assigned to the
file; exp2$ names the file to be accessed; length determines the
number of files.

Note: nmexp (buffer number) cannot exceed the number you entered
for the FILES? question during initialization. If you entered:

HOW MANY FILES? 2,V <ENTER>

then nmexp can have the value of 1 or 2.

----------ltadaelbaell---------

PAGE 192

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS-eo@ __________ _

Examples

1.0'8' OPEN "0" , 1, "CLI ENTLS /TXT"

Opens the file CLIENTLS/TXT for sequential output. Buffer 1 will
be used. If the file does not exist, it will be created. If it
already exists, then its previous contents are lost. (This is
explained under "Sequential I/0 Techniques".)

10'.0' OPEN "I",l,"PROGl/TXT:l"

Opens the file PROGl/TXT
2 assigned to the file,
PROGl/TXT does not exist
returned since you can't

on drive 1 for sequential input. Buffer
If

on drive 1, an error message is
input from a non-existent file.

1.0'.0 INPUT "MODE (I,O,R)";MODE$
lHf INPUT "BUFFER NUMBER"; BUFFER$
12.0 INPUT "FILE SPECIFICATION";FILESPEC$
13.0' OPEN MODE$, BUFFER%, FILESPEC$

This sequence of statements lets you provide the arguments for
the OPEN statement during program execution. The first
character of MODE$ sets the acess mode, BUFFER% determines which
buffer will be used, and FILESPEC$ gives the file specification.

OPEN"R",2,"DATA/BAS.SPECIAL",2

OPENS the file DATA/BAS with password SPECIAL, in the Random I/0
mode, using buffer 2 and indicating record lengths of 2 files. If
DATA/BAS does not exist, it will be created on the first non
write-protected drive.
While a file is open, it is referenced by the buffer-number
which was assigned to it. Examples:

GET buffer-number
PUT buffer-number
PRINT# buffer-number
INPUT# buffer-number

All these statements will reference a file which was OPENed via
buffer-number. The mode must be correct.

Once a buffer has been assigned to a file with the OPEN
statement, that buffer cannot be used in another OPEN statement.
You must close it first. ladlelllaeli-------------

PAGE 193

M_o_o_E_L_r_r_r_o_r_s_K_s_Y_s_T_E_M ___ TRS-BO@ ______ o_WN_E_R_s_MA_Nu_AL __

More on Buffer Assignment

Two or more buffers may be assigned to the same file for
sequential input (I-mode). However, only one buffer at a time
may be assigned to a file for sequential output (O-mode) or
random access (R-mode).

For example:

10' OPEN "I",l,"TEST/TXT:l"
2R/ OPEN "I",2,"TEST/TXT:l"

Now TEST/TXT can be accessed via buffers 1 and 2 for sequential
input.

Do not leave disk files OPEN longer than you have to. This is
because the disk files are especially vulnerable to power
failures and voltage transients, accidental removal of
diskettes, etc.

For example, it is NOT good practice to OPEN a file at the
beginning of a program, and leve it OPEN until the end of the
program. Instead, you should OPEN the file when you are ready to
read or write the data, and CLOSE.the file when you've finished.

----------lad1elllaell----------
PAGE 194

DISK BASIC

CLOSE (close access to the file)

CLOSE [nm exp [,nmexp ...]]

where nmexp has a value from 1 to 15, and refers to the
file's buffer-number (assigned when the
file was opened). If nmexp is omitted, all
open files will be closed.

This command terminates access to a file through the specified
buffer(s). If nmexp has not been assigned in a previous OPEN
statement, then

CLOSE nmexp

has no effect.

Examples of CLOSE statements:

CLOSE 1,2,8

Terminates the file assignments to buffers 1, 2 and 8. These buffers
can now be assigned to other files with OPEN statements.

CLOSE FIRSTr.+COUNTr.

Terminates the file assignment to the buffer specified by the sum
(FIRST%+ COUNT%).

Do not remove a diskette which contains an open file - first close
the file. This is because the last 256 bytes of data may not have
been written to disk yet. Closing the file will write the data, if it
hasn't already been written.

The following actions and conditions cause all files to be
automatic ally closed:

NEW ii~Hlil
RUN iHHlii
MERGE filespcc Ui¢il4d
EDITing a file
Adding or deleting program lines
Execution of the CLEAR n statement
Disk Errors

1 or:;
' ,.' _,.,

INPUT# (sequential read from disk)

INPUT# mnexp, varl.,var .. .]

where nrnexp specifies a sequential input file
buffer, mnexp=l,2, ... ,15

var is the variable name to contain
the data from the file

This statement inputs data from a disk file. The data is input
sequentially. That is, when the file is first opened, a pointer is set
to the beginning of the file. Each time data is input, the pointer
advances. To start over reading from the beginning of the file, you
must close the file--buffer and re-open it.

INPUT# doesn't care how the data was placed on the disk -- whether
a single PRINT# statement put it there, or whether it required 10
different PRINT# statements. What matters to INPUT# are the
positions of the terminating characters and the EOF marker.

To INPUT# data successfully from disk, you need to know ahead of
time what the fonnat of the data is. Here is a description of how
INPUT# interprets the various characters it encounters when reading
data.

When inputting data into a variable, BASIC ignores leading blanks;
when the first non-blank character is encountered, BASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The particular terminating
characters vary, depending on whether BASIC is inputting to a
numeric or string variable.

196

DISK BASIC

DISK BASIC

Special Note

Here's an important exception t~ keep in mind in reading
the following material.

When (EN) (a carriage return) is preceded by(LF) (a line
feed), the (EN> is not taken as a terminator. Instead, it
becomes a part of the data item (string variable) or is
simply ignored (numaric variable).

(To enter the <LF) character from the keyboard1 press the
down-arrow character. To enter the (EN) character, press
(ENTER).)

This exception applies to all cases noted below where
(EN) is said to be a terminator.

Numeric Input

Suppose the data image on disk is

\61.234\6-331))\6271)) <EN>

<EN> denotes a carriage-return character (ASCH code decimal 13).

Then the statement

INPUTU, A,B,C

or the sequence of statements

INPUTl1, A: INPIJTU, B: INPIJTU, C

will assign the values as follows:

A=l.234
B=-33
C=27

This works because blanks and < EN > serve as terminators for
input to numeric variables. The blank before 1.234 is a "leading
blank", therefore it is ignored. The blank after 1.234 is a
terminator; therefore BASIC starts inputting the second variable at
the - character, inputs the number -33, and takes the rwxt two
blanks as terminators. The third input begins at the 2 and ends
with the 7.

197

String Input

When reading data into a string variable, INPUT ignores all leading
blanks; the first non-blank character is taken as the beginning of the
data item.

If this first character is a double-quote ("), then INPUT will evaluate
the data as a quoted string: it will read in all subsequent characters
up to the next double-quote. Commas, blanks, and <EN>
-characters will be included in the string. The quotes themselves
do not become a part of the string.

If the first character of the string item is not a double-quote, then
INPUT will evaluate the data as an unquoted string: It will read in
all subsequent characters up to the first comma, or < EN> .
If double quotes are encountered, they will be included in the string.

For example, if the data on disk is:

PECOS,1,6TEXAS "GOOD MELONS"

Then the statement

INPUT#i, A$,8$,C$

would assign values as follows:

A$=PECOS
B$=l'>TEXAS "GOOD1,6MELONS"
C$= null string

If a comma is inserted in the data image before the first double quote,
C$ will get the value, GOOD MELONS.

These are very simple examples just to give you an idea of how
INPUT works. However, there are many other ways to input data -
different terminators, different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all,
we'll give a generalized description of how input works and what
the terminating characters and conditions are, and then provide
several examples.

When BASIC encounters a terminating character, it scans ahead to
see how many more terminating characters it can include with the
first terminator. This ensures that BASIC will begin looking for the
next data item at the correct place.

The list below defines the various terminating sets INPUT# will
look for. It will always try to take-in the largest set possible.

198

DISK BASIC

DISK BASIC

Numeric-input tenninator sets

end of file encountered
255th data character encountered
, (comma)
<EN>
< EN> <LF>
\6[lp ...][< EN>]
lp[lp .,.][<EN><LF>]

Quoted-string terminator sets

end of file encountered
255th data character encountered
" (double quote)
II [\6 • • .] [,]
"[\6 ...] [<EN>]
"[~ ...] [<EN> <LF>]

Unquoted-string terminator sets

end of file encountered
255th data character encountered

< EN> [<LF>]

Here's a flow chart describing how INPUT# assigns data to a variable:

START

EXAMINE NEXT
1----4<

CHARACTER

IGNORE IT
PICKUP THE
TERMINATOR
SET

GET DATA FROM
TEMPORARY
SAVE AREA

199

NO
PUT IT INTO

TEMPORARY

SAVE AREA

EVALUATE IT
ASSIGN TO

VARIABLE END

The following table shows how various data images will be read-in by
the statement:

INPUTl1, A, B, C

Ex.# Image on disk

i;123.4si; < EN><LF> i;s.2E4i;i;1000<EN>

Values assigned

A=123.45
B=82000
C=7000

2 i;i;i;3<LF><EN> 4 <EN>s <EN> Al2eof A=34

3 1,,2,3,4 <EN>

4 1,3 ,end-of-file

B=S
C=0

A=l
B=0
C=2

A=l
B=2
C=0 end of file error

In Example 2 above, why does variable C get the value O? When the
input reaches the end of file, it terminates the last data item, which
then contains "Al 2". This is evaluated by a routine just like the
BASIC VAL function -which returns a zero since the first character
of "Al 2" is non-numeric.

In Example 3, when INPUT# goes looking for the second data item,
it immediately encounters a terminator (the comma); therefore·
variable Bis given the value zero.

The following table shows how various data images on disk will be
read by the statement:

INPUTl1,A$,8$

Ex.# hnage on disk

1 f)f>f>"ROBERTS,J."ROBERTS,M.N eof

2 f)f)f)ROBERTS,J .,f)f)f)ROBERTS,M.N. <EN>

3 THE WORD "QUO",12345.789 <EN>

Values assigned

A$=ROBERTS,J.
B$=ROBERTS,M.N.

A$=ROBERTS
B$=J.

A$=THE WORD "QUO"
B$=12345.789

DISK BASIC

4 BYTE<LF> <EN> UNIT OF MEMORY eof A$=BYTE<LF> <EN> UNIT OF MEMORY
B$=null (eof error)

200

DISK BASIC

In example 3, the first data item is an unquoted string, therefore the
double-quotes are not terminators, and become part of A$.

In example 4, the <EN> is preceded by an < LF >, therefore it
does not terminate the first stling; both < LF > and < EN >
are included in A$.

Technical Note: The above discussion ignores the role of the input
buffer in the sequential input process. Actually, DISK BASIC
always reads in 256-byte data records into the buffer, and then sorts
through what's in the buffer to "satisfy" the INPUT# variable list.
That's why

100 INPUT ii> A¼
200 INPUTi1, Br.

do not necessarily require two disk accesses. The 256-byte record
in the buffer can contain enough data for A%, B% and more.

LINE INPUT#
(read a line of text from disk)

LINE INPUT#nmexp,var$

where nmexp specifies a sequential output file buffer,
nmexp=l ,2, ... , 15

var$ is the variable name to contain the string
data

Similar to LINE INPUT from keyboard, this statement reads a
"line" of string data into var$. This is useful when you want to
read an ASCII-fonnat BASIC program file as data, or when you want
to read in data without following the usual restrictions regarding
leading characters and terminators.

LINE INPUT (or LINEINPUT - the space is optional) reads
everything from the first character up to:

1) an <EN> character which is not preceded by<LF >
2) the end-oH1le
3) the 255th data character (this 255 character is included

in the string)

Other characters encountered - quotes, commas, leading blanks,
< LF > < EN > pairs -- are included in the string.

201

For example, if the data looks like:

10 CLEAR 500 <EN>
20 OPEN "1",l ,"PROG" <EN>

then the statement

LINEINPUTl1,A$

could be used repetitively to read each program line, one line at a
time.

PRINT# (sequential write to disk fde)

PRINT#nmexp,[USING format$;] exp[p exp ...]

where nmexp specifies a sequential output file buffer,
nmexp=l ,2, ... ,15

format$ is a sequence of field specifier~ used with
the USING option

p is a delimiter placed between every two
expressions to be PRINTed to disk; either
a semi-colon or comma can be used
(semi-colon is preferable)

exp is the expression to be evaluated and
written to disk

This statement writes data sequentially to the specified file. When
you first open a file for sequential output, a pointer is set to the
beginning of the file, therefore your first PRINT# places data at
the beginning of the file. At the end of each PRINT# operation, the
pointer advances, so the values are written in sequence.

A PRINT# statement creates a disk image similar to what a PRINT
to display creates on the screen. Remember this, and you'll be able
to set up your PRINT# list correctly for access by one or more
INPUT statements.

PRINT# does not compress the data before writing it to disk; it
writes an ASCII-coded image of the data.

202

DISK BASIC

DISK BASIC

For example, if A=l 23.45

PRINT#i, A

will write a nine-byte character sequence onto disk:

i6123.45'6 <EN>

The punctuation in the PRINT list is very important. Unquoted
commas and semi-colons have the same effect as do in regular
PRINT to display statements.

For example, if A=2300 and B=l.303, then

PR INT#i, A, B

places the data on disk as

<EN>

The comma between A and Bin the PRINT# list causes 10 extra
spaces in the disk file, Generally you wouldn't want to use up
disk space this way, so you should use semi-colons instead of
commas.

PRINT#1,A;B

writes the data as:

2300 1.303 <EN>

PRINT# with numeric data is quite straightforward just remember
to separate the items with semi-colons.

PRINT# with string data requires more care, primarily because you
have to insert delimiters so the data can be read back correctly. In
particular, you must separate string items with explicit delimiters
if you want to INPUT# them as distinct strings.

For example, suppose:

A$="JOHN Q. DOE" and B$="100-01-001"

Then:

PRINT#:1, A$; B$

would produce this image on disk:

20J

JOHN Q. DOEl00-0l-001 <EN>

which could not be INPUT back into two variables.

The statement:

PRINT#1, A$; 11 , "; 8$

would produce:

JOHN Q. DOE, 100-01-001

which could be INPUT# back into two variables.

This method is adequate if the string data contains no delimiters -
commas or <EN> -characters. But if the data does contain
delimiters or leading blanks that you don't want to ignore, then you
must supply explicit quotes to be written along with the data.
For example, suppose A$="DOE, JOHN Q." B$="100-01-001"

If you use

PRINT#1, A$; 11 , "; 8$

the disk image will be:

DOE, JOHN Q.,100-01-001 <EN>

When you try to input this with a statement like

INPUT#2,A$,8$

A$ will get the value "DOE", and B$ will get "JOHN Q." - because
of the comma after DOE in the disk image.

To write this data so that it can be input correctly, you must use
the CHR$ function to insert explicit double quotes into the disk
image. Since 34 is the decimal ASCII code for double quotes, use
CHR$(34) as follows:

PRINT#1,CHR$(34);A$;CHR$(34);8$

this produces the disk image

"DOE, JOHN Q."100-01-001 <EN>

which can be read with a simple

INPUT#2,A$,B$

204

DISK BASIC

DISK BASIC

Note: You can also use the CHR$ function to insert other delimiters
and control codes into the file, for example:

CHR$(10)
CHR$(13)

< LF > Line Feed

CHR$(11) or CHR$(12)
carriage return (<EN >character)
line-printer top-of-form

USING Option

This option makes it easy to write files in a carefully controlled
format. You could create a report file this way, which then could be
LISTed or PRINTed (TRSDOS commands).

Or you could use this option to control how many characters of a
value are written to disk.

For example, suppose:
A$="LUDWIG"
B$="VAN"
C$="BEETHOVEN"

Then the statement

PRINTl1, USING"!. ! . ?. ?.11 ; A$; 8$; C$

would write the data in nickname form:

L.V.BEET <EN>

(In this case, we didn't want to add any explicit delimiters.) See the
PRINT USING description in the LEVEL II BASIC Reference
Manual for a complete explanation of the field-specifiers.

Technical Note: The above discussion ignores the role of the
output buffer in the sequential write process. Actually, the data is
first placed into the buffer, and then, as 256-byte records are filled,
the data is written to the disk file. That's why there isn't always a
disk access during execution of each PRINT# statement.

205

Random Access Statements

FIELD
(organize a random file-buff er into fields)

FIELD 11mexp,11mexp 1 AS Far!$ [,mnexp2 AS var2$.. .]

where runexp

mnexpl
var/$

mnexp2
rar2$

specifies a random access file buffer,
wnexp= 1 ,2, ... , 15
specifies the length of the first field,
defines a variable name for the first field
specifies the length of the second field
defines a variable name for the second field
subsequent mnexp AS 11ar$ pairs define
other fields in the buffer
----------------------'

Before FIELDing a buffer, you must use an OPEN statement to
assign that buffer to a particular disk file (must use random access
mode). Then use the FlELD statement to organize a random file
buffer so that you can pass data from BASIC to disk storage and
vice-versa.

Each random file buffer has 256 bytes which can store data for
transfer from disk storage to BASIC or from BASIC to disk.
However, you need a way to access this buffer from BASIC so
that you can either read the data it contains or place new data
in it. The FIELD statement provides the means of access.

You may use the FIELD statement any number of times to
"re-organize" a file buffer. FIELDing a buffer does not clear
the contents of the buffer; only the means of accessing the buffer
(the field names) are changed. Furthennore, two or more field
names can reference the same area of the buffer.

Examples:

FIELD 1, 128 AS A$, 128 AS BS

This statement tells BASIC to assign the first 1 28 bytes of the buffer
to the string variable A$ and the remaining 128 bytes to B$. If you
now print A$ and B$, you will see the contents of the buff er. Of
course, this value would be meaningless unless you have used GET
to read a 256-byte record from disk.

Note: All data -- both strings and numbers - must be placed into
the buffer in string form. There are three pairs of functions
(MKI$/CVI,MKS$/CVS,MKD$/CVD) for converting numbers to
strings and vice-versa. See "Functions", below.

206

DISK BASIC

DISK BASIC

FIELD 3, 16 AS NM$, 25 AS AD$, 10 AS CY$, 2 AS ST$,7 AS ZP$

The first 16 bytes of buff er 3 are assigned the buffer name NM$; the
next 25, AD$; the next 10, CY$; the next 2, ST$; and the next
7, ZP$. The remaining 196 bytes of the buff er are not fielded at all.

More on field names

Field names, like NM$,AD$,CY$,ST$ and ZP$, are not string
variables in the ordinary sense. They do not consume the string
space available to BASIC.

Instead, they point to the buffer field which you assigned with the
FIELD statement. That's why you can use:

100 FIELD 1,255 AS A$

without worrying about whether 255 bytes of string space are
available for A$.

If you use a buff er field name on the left side of an ordinary assignment
statement, that name will no longer point to the buffer field; therefore
you won't be able to access that field using the previous field name.

For example,

A$=8$

nullifies the effect of the FIELD statement above (line 100).

During random input, the GET statement places data into the
255-byte buffer, where it can be accessed using the field names
assigned to that buffer. During random output, LSET and RSET
place data into the buffer, so you can then PUT the buffer contents
into a disk file.

Often you'll want to use a dummy variable in a FIELD statement
to "pass over" a portion of the buffer and start fielding it somewhere
in the middle. For example:

FIELD 1, 16 AS CLIENT$(1>, 112 AS HIST$(1)
FIELD 1, 128 AS DUMMY$, 16 AS CLIENT$(2>, 112 AS HIST$(2)

In the second FIELD statement, DUMMY$ serves to move the starting
position of CLIENT$(2) to position 129. In this manner, two
identical "subrecords" are defined on buffer number 1. We won't
actually use DUMMY$ to place data into the buffer or retrieve it from
the buffer.

207

The buffer now "looks" like this:

116 I 112

[
L .. $ HIST$) (I)

---DUMMY$

J CL.$
(2)

GET

112

HIST$
(2)

(read a record from disk - random access)

GET nme:xp1 [,nme:xp2]

where nmmexp I specifies a random access file buffer,
nmexp1=1,2, ... ,15

nmexp2 specifies which record to GET in the
file; if omitted, the current record will
be read.

This statement gets a data record from a disk file and places it in the
specified buffer. Before GETting data from a file, you must open
the file and assign a buffer to it. That is, a statement like:

OPEN "R",nmexpl,filespec

is required before the statement:

GET nmexpl,nmexp2

When BASIC encounters the GET statement, it looks at the buffer's
control block, and obtains:

• the information needed to access the file
• the mode in which this buffer was set up (must be R)
• the current record number
• The EOF (end-of-file) record number, i.e., the highest

numbered record in the file
• lots of other information for internal use

BASIC then reads record nmexp2 from the file and places it into the
buffer. If you omit the record number, it will read the current record.

The "current record" is the record whose number is one higher than
that of the last record accessed. The first time you access a file via
a particular buffer, the current record is set equal to 1.

208

DISK BASIC

DISK BASIC

For example:

Program statement

1000 OPEN"R",l,"NAME/BAS"

1010 FIELD 1, ...
1020 GET 1
1025 REM ... ACCESS BUFFER
1030 GET 1,30
1035 REM ... ACCESS BUFFER
1040 GET 1,25
1046 REM ... ACCESS BUFFER
1050 GET 1

Effect

Open NAME/BAS for random
access using buff er 1

Structure buff er
GET record 1 into buffer 1

GET record 30 into buffer 1

GET record 25 into buffer 1

GET record 26 into buffer 1

If you attempt to GET a record whose number is higher than that
of the end-of-file record, BASIC will fill the buffer with hex zeroes,
and no error will occur.

To prevent this from occurring, you can use the LOF function to
determine the number of the highest numbered record.

PUT
(write a record to disk - random access)

PUT nmexpl [,nmexp2]

where nmexpl specifies a random access file buffer,
nmexp=l,2, ... ,15

nm<;xp2 specifies the record number in the file,
nmexp2=1,2, .. , up to 335, depending
on how much space is available on the
disk; if nmexp2 is omitted, the current
record number is assumed.

This statement moves data from a file's buffer into a specified place
in the file. Before PUTing data in a file, you must:

1) OPEN the file, thereby assigning a buff er and defining the
access mode (must be R);

2) FIELD the buffer, so you can
3) place data into the buffer with LSET and RSET statements.

209

Wht:n BASK' cncounkrs the statement:
PUT wne:xp,mnexp2

it doi;:•s the following:

e. Gets the ini'ormation needed to access the disk Ille
111 Checks the access modt? for this buffer (must be R)
• Acquires more disk space for tile file if necessary to

accommodate the record indicatc-d 1,y nmexp2
@ Copies the buffer contents into the specified record or the

disk file
.I) lipdates the current record nurnber to equal nmexp2+1

The "current record'' is the record whose number is one higher than
the last record accessed. The first time you access a file via a
particular buffer, the current record is set equal to I.

If the record rlurnlwr you PUT b higher than the end-of-file record
number, then wnexp~ becomes the new em.l-of-fiie rec:ord number.

This h11s an important implication. Whe11 you PUT a record whose
number exceeds the EOF record number, space is allocated on the
disk to accommodate the new highest record number plus all
lmver-numhen::d records.

210

DISK BASIC

DISK BASIC

Examples (assume a file named SAMPLE/BAS exists and that you
have previously w1itten 10 records to it, so that LOF=I0):

Program statement

1000 OPEN"R", I, "SAMPLE/BAS"

1010 FIELD 1,
1020 LSET
1030 PUT I

1035 LSET
1040 PUT 1,30

1045 LSET
1050 PUT 1,25

1055 LSET
1060 PUT 1

Effect

Open SAMPLE/BAS for random
address under buff er 1

Prepare buffer
Place data in buffer
Copy buffer contents into

current record (=# 1)
Place data in buffer
Acquire disk space for records

2 through 30 and copy
buff er contents into record
30; set LOF=30

Place data in buffer
Copy buffer contents into

record 25
Place data in buffer
Copy buffer contents into

current record (=#26)

211

LSET and RSET
(place data in a random buff er field)

LSET var$= exp$ and RSET JJar$:::: exp$

where var$ is a field name

exp$ contains the data to be placed in the buffer
field named by var$

These two statements let you place character-string data into fields
previously set up by a FIELD statement.

For example, suppose NM$ and AD$ have been defined as field
names for a random file buffer. NM$ has a length of 18 characters,
and AD$ has a length of 25 characters.

Now we want to place the following information into the buffer
fields so it can be written to disk:

name:
address:

JIM CRICKET, JR.
2000 EAST PECAN ST.

This is accomplished with the two statements:

LSET NM$= 11 .JIM CRICKET, .JR. II

LSET A[>$="2000 EAST PECAN ST. "

This puts the data in the buffer as follows:

I JIM1,6CRICKET,JR.1,6\',1,6 I
NM$

120001,6EAST1,6PECAN1,6ST.1,6Jp1,61,6Jplp I
AD$

Note that filler spaces were placed to the right of the data strings
in both cases. If we had used RSET instead of LSET statements, the
filler spaces would have been placed on the left. This is the only
difference between LSET and RSET.

For example:

RSET NM$= 11 .JH1 CRICKET, .JR. II

RSET AD$="2000 EAST PECAN ST."

places data in the fields as follows:

I li'\hlpJIM1,6CRICKET,JR. I
NM$

I 1,61,6Jpl,6Jp1,620001,6EAST1,6PECAN1,6ST. I
AD$

212

DISK BASIC

DISK BASIC

If a string item is too large to fit in the specified buffer field, it is
always truncated on the right. That is, the extra characters on the
right are ignored.

CVD, CVI and CVS
(restore string to numeric form)

CVD(exp$)

where exp$ defines an eight character string; exp$ is
typically the name of a buffer-field

CVI(exp$)

containing a numeric stri:pg. If LEN(exp$)<8,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$)>8, only the first eight characters
are used.

where exp$ defines a two-character string; exp$ is
typically the name of a buff er-field

CVS(exp$)

containing a numeric string. If LEN(exp$) < 2,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$) >2, only the first two characters
are used.

where exp$ defines a four-character string; exp$ is
typically the name of a buff er-field
containing a numeric string. If
LEN(exp$)< 4, an ILLEGAL FUNCTION
CALL error occurs; if LEN(exp$)>4,
only the first four characters are used.

These functions let you restore data to numeric form after it is read
from disk. Typically the data has been read by a GET statement, and
is stored in a random access file buff er.

The functions CVD, CVI, CVS are inverses of MKD$, MKI$, and
MKS$, respectively.

For example, suppose the name GROSSPAY$ references an eight
byte field in a random-access file buffer, and after GETting a record,
GROSSPAY$ contains a MKD$ representation of the number
13123.38.

213

Then the statement:

PRINT CVD<GROSSPAY$)-TAXES

prints the result of the difference, 13123 .3 8-TAXES. Whereas the
statement:

PRINT GROSSPAY$-TAXES

will produce a TYPE MISMATCH error, since string values cannot be
used in arithmetic expressions.

Using the same example, the statement

Ai=CVD<GROSSPAY$)

assigns the numeric value 13123.38 to the double-precision variable
A#.

EOF (end-of-file detector)

EOF(nmexp)

where nmexp specifies a file buffer,
nmexp=l,2, ... ,15

This function checks to see whether all characters up to the end-of
file marker have been accessed, so you can avoid INPUT PAST END
errors during sequential input.

Assuming nmexp specifies an open file, then EOF(nmexp) returns
0 (false) when the EOF record has not yet been read, and -1 (true)
when it has been read.

Examples:

IF EOF<S) THEN PRINT"END OF FILE"FILENM$
IF EOF(NMr.) THEN CLOSE NMr.

214

DISK BASIC

DISK BASIC

The following sequence of lines reads numeric data from DATA/TXT
into the array A(). When the last data character in the file is read,
the EOF test in line 30 "passes", so the program branches out of the
disk access loop, preventing an INPUT PAST END error from
occurring. Also note that the variable I contains the number of
elements input into array A().

5 DIM A<100) ✓ASSUMING THIS IS A SAFE VALUE
10 OPEN "l",1,"DATA/TXT"
20 l?.=0
30 IF EOF(1) THEN 70
40 INPUTl1,A<I?.)
50 l?.=l?.+1
60 GOTO 30
70 REM PROGRAM CONTINUES HERE AFTER DISK INPUT

LOF (get end-of-rde record number)

LOF(nmexp)

where nmexp specifies a random access buffer
nmexp=l,2, ... ,15

This function tells you the number of the last, i.e., highest numbered,
record in a file. It is useful for both sequential and random access.

For example, during random access to a pre-existing file, you often
need a way to know when you've read the last valid record. LOF
provides a way.

Examples:

10 OPEN "R",1,"UNKNOWN/TXT"
20 FIELD 1,255 AS A$
30 FORl?.=1 TO LOF(1)
40 GET 1,1?.
50 PRINT A$
60 NEXT

In line 30, LOF(l) specifies the highest record number to be accessed.

Note: If you attempt to GET record numbers beyond the end-of-file
record, BASIC simply fills the buff er with hexadecimal zeroes, and
no error is generated.

When you want to add to the end of a file, LOF tells you where to
start adding:

100 l?.=LOF(1)+1 'HIGHEST EXISTING RECORD
110 PUT 1,1?. 'ADO NEXT RECORD

215

MKD$, MKI$ and MKS$
(convert data, numeric-to-string)

MKD$(nmexp)

where nmexp is evaluated as a double-precision number

MKI$(nmexp)

where nmexp is evaluated as an integer,
-32768< =nmexp <32768; if nmexp exceeds
this range, an ILLEGAL FUNCTION CALL
error occurs; any fractional component in
nmexp is truncated

MKS$(nmexp)

where nmexp is evaluated as a single-precision number

These functions change a number to a "string". Actually the byte
values which make up the number are not changed; only one byte,
the internal data-type specifier, is changed, so that numeric data can
be placed in a string variable.

That is:

MKD$ returns an eight-byte string
MKI$ returns a two-byte string
MKS$ returns a four-byte string

Examples:

ASC(MKI$(I%)) equals the lsb of I%, i.e., (1% AND 255)
ASC(RIGHT$(MKl$(I),l))=the msb of I%, i.e., INT(l%/256)

LSET AVG$=MKS$(0.123)

A VG$ would typically reference a four-byte random buffer field.
Now it contains a representation of the single-precision number
0.123.

216

DISK BASIC

DISK BASIC

LSET TALLY$=MKI$(I%)

Field name TALLY$ would now contain a two-byte representation
of the integer 1%.

A$=MK1$(8/I)

A$ becomes a two-byte representation of the integer portion of 8/I.
Any fractional portion is ignored. Note that A$ in this case is a
normal string variable, not a buffer-field name.

Suppose BASEBALL/BAT (a non-standard file extension) has been
opened for random access using buffer 2, and the buff er has been
FIELDed as follows:

field: NM$
length: 16

YRS$ AVG$
2 4

HR$
2

AB$
4

ERNING$
4

NM$ is intended to hold a character string; A VG$, AB$ and
ERNING$, converted single-precision values; YR$ and HR$,
converted integers.

Suppose we want to write the following data record:

SLOW LEARNER played 3 8 years ; lifetime batting average .123;
career homeruns, 11; at bats, 32768; ..• , earnings -13.75.

Then we'd use the make-string functions as follows:

1000 LSET NM$=" SU)~~ LEARNER 11

1010 LSET YRS$=MKI$(38)
1020 LSET AVG$=t1KS$ C 123:)
1010 LSET HR$=~U(l$(11)
1040 LSET AB$=f1KS$G2768)
1050 LSET ERNING$=MKS$(-13. 75)

After this sequence, you can write SLOW LEARNER's information
to disk with the PUT statement. When you read it back from disk
with GET, you will need to restore the numeric data from string
to numeric form, using CVI and CVS functions.

217

FILE ACCESS TECHNIQUES

Methods of Access
Disk BASIC provides two means of file access:

Sequential-in which you start reading or writing data at the beginning of a
file; subsequent reads or writes are done at following positions in the file.

Random-in which you start reading or writing at any record you specify.
(Direct access is also called random access1

Sequential access is stream--oriented; that is, the number of characters read or
written can vary, and is usually determined by delimiters in the data. Random
access is record-oriented; that is, data is always read or written in fixed-length
blocks called records.

To do any input/output to a disk file, you must first Open the file. When you
Open the file, you specify what kind of access you want:
• "O" for sequential output
• "I" for sequential input
• "R" for random input/output

You also assign a file buffer for BASIC to use during file accesses. This number
can be from 1 to 15, but must not exceed the number of concurrent files you
requested when you started BASIC from TRSDOS. For example, if you started
BASIC with 3 files, you can use buffer numbers 1, 2, and 3. Once you assign a
buffer number to a file, you cannot assign that number to another file until
you Close the first file.

218

Examples:
OPEi\! 11 0 11 , 1, "TE\3T"

Creates a sequential output file named TEST on the first available drive; if
TEST already exists, its previous contents are lost. Buffer 1 will be used for this
file.

OPF~·-l II I 11 , :::, 11 TE\3T"
Opens TEST for sequential input, using buffer 2.

OPEN "R" , l , 11 TE'.3T 11

Opens TEST for direct access, using buffer 1, IfTEST does not exist, it will be
created on the first available drive. Since record length is not specified,
256-byte records will be used.

OF'FN 11 R11 ' 1 j II TE:HT II ' .i'.1,[2'.I

Same as preceding example, but 40-byte records will be used.

OPEN "E" 1, "TEST"
I • •

Opens TEST sequentially for write and positions to EOF.

219

FILE ACCESS TECHNIQUES

Sequential Access
This is the simplest way to store data in and retrieve it from a file. it is ideal
for storing free-form data without wasting space between data items. You
read the items back in the same order in which they were written.

There are several important points to keep in mind.

1. You must start writing at the beginning of the file. If the data you are
seeking is somewhere inside, you have to read your way up to it.

2. Each time you Open a file for sequential output, the file's previous
contents are lost.

3. To update (change) a sequential file, read in the file and write out the
updated data to a new output file.

4. Data written sequentially usually includes delimiters (markers) to signify
where each data item begins and ends. To read a file sequentialy, you must
know ahead of time the format of the data. For example: Does the file
consist of lines of text terminated with carriage returns? Does it consist of
numbers separated by blank spaces? Does it consist of alternating text and
numeric information?

5. Sequential files are always written as ASCII-coded text, one byte for each
character of data. For example, the number:

;t.2345),
requires 8 bytes of disk storage, including the leading and trailing blanks that
are supplied. The text string:

Johnson,)(Robert
requires 15 bytes of disk storage.

6. Sequential files are always written with a record length of one. This
matters if you want to Close the file and re-Open it for Random access: in such a
case, you must specify a record length of 1.

220

Sequential Output: An Example

Suppose we want to store a table of English-to-metric conversion constants:

English unit Metric equivalent

2.54001 centimeters
1.60935 kilometers

.. 4~.~Jq.m~ers
0.01638716 liter
3.185 littrs
0.9463 liter
1l,4~t>9 ki:lpgram

First we decide what the data image is going to be. Let's say we want it to look
like this:

english unit->metric unit, factor X'OD'

For example, the stored data would start out:

IN->CM, ij2.540011;, X'OD'

The following program will create such a data file.

Note: X'OD' represents a carriage return.

10 OPEN "0",1, 0 METRIC/TXT"
:?if) FOF~ Io/,,::::: :l. TO 7

READ UNIT$, FACTR
PRINT :ltl, I __ Jl'·lIT'~;; ",";

'.::'iiZJ NEXT
c:iO C!.J)bE
70 DATA IN->CM, 2.54001, MI->KM, 1.60935, ACRE->80.M, 4046.86
80 DATA CU.IN->LTR, 1.638716E-2, GAL->LTR, 3.785
90 DAl'A LIQ.0T->L1R, 0.94631 LB->KG, 0.45359

221

FILE ACCESS TECHNIQUES

Line lO creates a disk file named METRIC/TXT, and assigns buffer l for
sequential output to that file. The extension iTXT is used because sequential
output always stores the data as ASCH-coded text

Note: lf METRIC/TXT already exists, line IO will cause all its data to be lost.
Here's why: Whenever a file is opened for sequential output, the end-of-file
(EDF) is set to the beginning of the file. In effect, TRSDOS "forgets" that
anything has ever been written beyond this point.

Line 40 prints the current contents of UNIT$ and FAC'TR to the file. Since the
string items do not contain delimiters, it is not necessary to print explicit
quotes around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF is at the end of the last data item, i.e., 0.45359,
so that later, during input, BASIC will know when it has read an the data.

222

Sequential Input: An Example

The following program reads the data from METRIC/TXT into two "parallel"
arrays, then asks you to enter a conversion problem.

~:i CL.EAR '.::iltj0
10 DIM UNIT$(9), FACTR(9)
20 OPEN"I",1,"METRIC/TXT:1"
2~:i I %::::0
30 IF EOF(1) THEN 70
~0 INPUT#l, UNIT$(I%>,FACTR(I%)
::\0 Ii>=I%+1
60 GOTO 30

'allows for UP to 10 data Pairs

70 CLOSE Conversion factors have been read-in
100 CLS: PRINT TAB<S>"*** En9lish to Metric Conversions***"
110 FOR ITEM%=0 TO 1%-1
120 PRINT TAB(9);USING"(##) \ \"; ITEM%, UNIT$(ITEM%)
1:30 NEXT
140 PRINT@ (19,0), "Which conversion (0-6)";
1 ::i!ZJ INPUT CHO I CEi:
160 INPUT"Enter En9lish 9uantitv";V
170 PRINT"The Metric e9uivalent is" V*FACTR<CHOICE%)
180 INPUT"Press <ENTER> to continue";X
190 PRINT@ (19,0), CHR$(24) 'clear to end of frame
200 GOTO 1 L1,0

Line 20 opens the file for sequential input. Input begins at the beginning of
the file.

Line 30 checks to see that the end-of-file record hasn't been reached. If it has,
control branches from the disk input loop to the part of the program that uses
the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into the
single-precision array FA CTR() . Note that this INPUT list parallels the PRINT#

list that created the data file (see the section "Sequential Output: An
Example"). This parallelism is not required, however. We could just as
successfully have used:

40 INPUT#1, UNIT$(I'1/.): INPUT#1,FACTFHI%)

223

FILE ACCESS TECHNIQUES

How to update a file

Suppose you want to add more entires into the English-Metric conversion
file. You can't simply re-Open the file for sequential output and PRINT# the
extra data - that would immediately set the EOF to the beginning of the file,
effectively destroying the file's previous contents. Do this instead:

1) Open the file for sequential input
2) Open another new data file for sequential output
3) Input a block of data and update the data as necessary
4) Output the data to the new file
5) Repeat steps 3 and 4 until all data has been read, updated, and output to

the new file; then go to step 6
6) Close both files

Sequential Line Input: An Example

Using the line-oriented input, you can write programs that edit other BASIC

program files: renumber them, change LPRINTs to PRINTs, etc. -as long as
these "target" programs are stored in ASCII format.

The following program counts the number of lines in any ASCII -format
BASIC disk file with the extension 1TXT.

H'J CL.[/;,!:{ ;,mi<i
20 INPUT"WHAT IS THE NAME OF THE PROGRAM''; PROG$
30 IF INSTR(PROG$,"/TXT")=0 THEN 110 're9uire /TXT extension
Lii7.1 OPEN"I", :1., PFiOG1,.
~")/;~ J:%::c(~
60 IF EOFC:I.) THEN 90
70 I%=I%+1: LINE INPUT#l, TEMP$
El0 GOTO 6(i)
9(ZJ PF{INT PF~OG1," I'.3" I% "LIN[:::) L.01\1(:i. 11

100 CLOSE: GOTO 20
110 PRINT "FILESPEC MUST INCLUDE THE EXTENSION '/1Xl'"
:I. ?i(t CiOTO 2i.i)

For BASIC programs stored in ASCII, each program line ends with a carriage
return character not preceded by a line feed. So the LINE INPUT in line 70
automatically reads one entire line at a time, into the variable TEMP$.

Variable I% actually does the counting.

To try out the program, first save any BASIC program using the A (ASCII)

option (See SAVE). Use the extension ;TXT.

225

FILE ACCESS TECHNIQUES

Random Access Techniques
Random access offers several advantages over sequential access:

• Instead of having to start reading at the beginning of a file, you can read any
record you specify.

• To update a file, you don't have to read in the entire file, update the data,
and write it out again. You can rewrite or add to any record you choose,
without having to go through any of the other records.

Random access is more efficient-data takes up less space and is read and
written faster.

• Opening a file for direct access allows you to write and read from the file via
the same buffer.

Random access provides many powerful statements and functions to
structure your data. Once you have set up the structure, direct input/
output becomes quite simple.

The last advantage listed above is also the "hard part" of direct access. It
takes a little extra thought.

For the purposes of direct access, you can think of a disk file as a set of
boxes--like a wall of post-office boxes. Just like the post office receptacles,
the file boxes are numbered. We call these boxes "records."

You can place data in any record, or read the contents of any record, with
statements like:

P1..JT l ~ ~'i write buffer-1 contents to record 5
GET :t , '.-S read the contents of record 5 into buffer- I

In the following illustration, we assume a record length of 256.

226

256 256 256 256 256
BYTES BYTES BYTES BYTES BYTES

#6 #7 #8 #9 #10

··1 256 256 256 256 "PUT1,5" 256
BYTES BYTES BYTES BYTES BYTES

#1 #2 #3 #4 "GET 1,5" #2
--

RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

The buffer is a waiting area for the data. Before writing data to a file, you
must place it in the buffer assigned to the file. After reading data from a file,
you must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data is passed
to and from the disk in records. The size of each record is determined by an
Open statement.

Storing Data in a Buffer

You must place the entire record into the buffer before putting its contents
into the disk file.

This is accomplished by 1) dividing the buffer up into fields and naming them,
then 2) placing the string or numeric data into the fields.

For example, suppose we want to store a glossary on disk. Each record will
consist of a word followed by its definition. We start with:

100 OPEN"R", 1, "GLOSSARY/BAS"
110 FIELD 1, 16 AS WO$, 240 AS MEANING$

Line 100 opens a file named GLOSSARY /BAS (creates it if it doesn't already
exist); and gives buffer 1 direct access to the file.

Line 110 defines two fields onto buffer 1:
WO$ consists of the first 16 bytes of the buffer;
MEANING$ consists of the last 240 bytes.

WO$ and MEANING$ are now field-names.

227

FILE ACCESS TECHNIQUES

What makes field names different? Most string variables point to an area in
memory called the string space. This is where the value of the string is stored.

Field names, on the other hand, point to the buffer area assigned in the FIELD
statement. So, for example, the statement:

10 PRINT WDS; 0 :"; MEANING$
displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer. LSET,
RSET and GET can all be used to accomplish this function. We'll start with
LSET and RSET, which are used in preparation for disk output.

Our first entry is the word "left-justify" followed by its definition.

100 OPEN"R", 1, "GLOSSARY/BAS"
110 FIELD 1, 16 AS WDS, 240 AS MEANINGS
120 LSET WDS="LEFT-JUSTIFY"
130 LSET MEANINGS="To Place a value in a field from left to ri9h
if the d~ta doesn't fill the field, blanks are added
on the ri9ht; if the data is too 1on9, the extra characters
on the ri9ht are i9nored. LSET is a left-Justify function."

Line 120 left-justifies the value m quotes into the first field in buffer 1. Line
130 does the same thing to its quoted string.

Note: RSET would place filler-blanks to the left of the item. Truncation
would still be on the right.

Now that the data is in the buffer, we can write it to disk with a simple PUT
statement:

1 L► (2) PUT 1, 1
:l :1,~ CL.Of:>E

This writes the first record into the file GLOSSARY/BAS.

To read and print the first record in GLOSSARY/BAS, use the following
sequence:

160 OPEN"R", :l., "GL.O~:;f\AF~Y/BAG"
170 FIELD 1, 16 AS WDS, 240 AS MEANING$
:I.BQ'.I GET :1~1
190 PRINT WO$: PRINT MEANING$
:?00 CL.0!:3E

Lines 160 and 170 are required only because we closed the file in line 150. If
we hadn't closed it, we could go directly to line 180.

228

Random Access: A General Procedure

The above example shows the necessary sequences to read and write using
direct access. But it does not demonstrate the primary advantages of this form
of access-in particular, it doesn't show how to update existing files by going
directly to the desired record.

The program below, GLOSSACC/BAS, develops the glossary example to show
some of the techniques of direct access for file maintenance. But before
looking at the program, study this general procedure for creating and
maintaining files via direct access.

Step

229

See GLOSSACC/BAS,
Line Number

FILE ACCESS TECHNIQUES

11J 1;:f,M (il •)E/,:/,CC/['-1\::o
l vw, CL:.: : CL!.J\I? :mv,
l J l'I OPFI\/ "R" , J , "CiLOE'.';t,HY i f',,t,<:;"

120 FILL~ 1, lb AS WDS, 238 AS MEANING$, AG Nx$
1:.,0 fl\lf·'UI "l•JH/\T RFCORD fJO YOU ,,J/,rf'f T•) tc,re:ri:;c:,;,, f1"i
J i1l11 GET l, r;;-;,; •..... ' ' '"

1 11,~:.1 NX:%, 1~.:\/I(NX:f;) ';'.:.:.:,{'.,Ut:.:· .. ·. 1 1·1.;1· T(; "/!."'''"' - •, , , \ , ·-· •·,·,), I f\L PHl',P.f. T' I C/\L Et,.1·r· f°I, l50 PRINT "WORD : "WDS
I. 6D F'f, I f,./T "!lEF 'N : '' : PR 1 N·r M[,'\hl J N>.',$
l /VJ 1-'F! H,1 "1'·11:'::X T 1\L. P"A!.·' .. ,[.··•··1· ·.,. ···· · 1· r, .. r ~N RY: RECORD#" NX% 1 PPJNI
.lf:l(;'I t,J,i, 0

· "" : 11"../l'UT "TYPE NE~J LIOH!! ·'f:r,/· OH EN II·' Oh."; kl•t,
170 Dt "" : Pf<H·H "TYPE NU,J DEF N EN UP .c1-.J JT

L 1 hff. J NPUT l)·t

200 tNPUl "rYPE NEW SEOULNCE NUMBER OR <EN.· JF OK"; NX%
:u l,J IF \,J-1: " " TH[l'•I 1.S[T L•JDJ; ~J't.
'.i.?O IF D:$ "" T!IFN Lb[! MF,,\NirK,ii D·l
230 LSET NXI MKI$!NX%l
;,:.cf(;_;; !'UT J , R%

245 RX NX% ·usE NEXT ,t,1 cL1M·- ., •.. J~L.·. ,. ··r·r·.
, 1 •.. "' ,.,,. [)· nUL.·, OF: l\ff x·1 RFCOP[.)

:·'1,1 Cl:, ; F'IUl'>fT " ·r·\.,,l'"I'.'·.· ·.·1·.·.·.1,..•,·.· 1· ' C:i HE/,D !'.I[/ r l\U'H/.\,. LJ\I ifJ\, •:
Pf-UNI" ,:;p PfCORD t!c T.N· F11f~ :',F'LCH J t,hHf':/·,,.:
INP1)T " UR (~ EN. 11) OUil"; J,"..;,

260 IF 0<R% THFN 140

Notice we've added a field, NX$, to the record (line 120). NX$ will contain the
number of the record which comes next in alphabetical sequence. This
enables us to proceed alphabetically through the glossary, provided we know
which record contains the entry which should come first.

For example, suppose the glossary contains:

record# word (WO$) defn,
pointer to next

alpha. entry (NX$)

When we read record 2 (BYTE), it tells us that record 4 (HEXADECIMAL) is
next, which then tells us record 1 (LEFT-JUSTIFY) is next, etc. The last entry,
record 3 (RIGHT-JUSTIFY), points us to zero, which we take to mean "The
End".

Since NX$ will contain an integer, we have to first convert that number to a
two-byte string representation, using MK!$ (line 230 above).

230

The following program displays the glossary in alphabetical sequence:

300 REM ... GLOSSOUT/BAS ...
310 CLS: CLEAR 300
320 OPEN "R", 1, "GLOSSARY/BAS"
330 FIELD 1, 16 AS WDS, 238 AS MEANINGS, 2 AS NXS
340 INPUT "WHICH RECORD IS FIRST ALPHABETICALLY"; N%
3~:H~ GET 1 , N~~
360 PRINT : PRINT WDS
370 PRINT MEANING$
380 N% = CVICNX$)
390 INPUT "PRESS ENTER TO CONTINUE"; X
400 IF N% <> 0 THEN 350
410 CLOSE
L•20 END

231

MODEL III DISK SYS'rEM OWNERS MANUAL -----------TRS-BO't,.,J _________ _

Disk BASIC Error Codes/Messages

100
102
104
106
108
114
122
124
126
128
132
134
136
138

Field overflow
Internal error
Bad file number
File not found
Bad file mode
Disk I/O error
Disk full
Input past end
Bad record number
Bad file name
Direct statement in file
Too many files
Disk write-protect
File access

---------- ltadaolhaeli----------

PAGE 232

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS•BQrfM) _________ _

INDEX

Subject Page
==================

APPEND ••.•••.•.•••• 41

ASCII •••••••••••••• 62, 68, 86,
162, 184, 189,
190 201, 203,
204

ATTRIB ••••.•••••••• 43, 97

AUTO ••••••••••.•••• 4 6 , 7 4

BACKSPACE •••••••••• 127

BACKUP 14, 39, 93,
109, 117

BASIC ••••••••••.••• 2 8, 30 , 45,
88, 143

BASIC * .•.......... 19, 143,148,
165

Baud•.......... 18 , 10 3

Bits ..•.•••.•..•..• 1

Buffer ••.•.••••••.. 192, 194, 206,
227

BUILD •.•••••••.•••• 48, 56, 92

Byte •.••••••.•..••• 1 , 6 2 , 6 3 ,
119, 123

Cable (Ribbon) •.••• 5, 6

Cass? •.•........... 19, 103

CLOCK .•••••••..••.. 52, 164, 167

CLOSE ••••.•.••..•.• 122, 135, 185,
191, 195

CLS ••••.••••••••••. 5 3

CMD"A" ••••.••••.••. 144, 150

CMD"C" ••.•••••••••• 144, 151

CMD"D" ••••••••••••• 144, 154

Subject Page
==================

CMD"E" ••.••..••.••• 144, 155

CMD " I " • • • • • • • ••••.. 14 4 , 155

CMD"J" •••••.•••...• 144, 157

CMD"L" ••.•••••••••• 144, 159,

CMD "0 " ••.•. 14 4 , 160

CMD"P" •••..••.•••.• 144, 162

CMD "R " • • • • ••••••••• 14 4 , 164

CMD"S" •••..•••••••• 143, 144,

CMD"T" •••••••••.••• 144, 167

CMD"X" ..•••.•.••••• 144, 168

CMD"Z" •••.•.•••••.• 144, 170

Commands
Auto ..•....••.•• 46
Entering .•..•... 31
Forms of• 33

174

165

Library ••..••.•. 27, 29, 32,
41-108

Syntax ..•....... 32
Utility•. 29, 109-116

CONVERT ••••••••.••• 111-115

COPY ••••••••••••••• 5 4 , 81

CREATE ••••••••••••• 56

CVD, CVI, CVS •••••. 185, 213, 217

Data Diskette ...•.. l

DATE •••.•••.••••••. 58

DCB 122, 124

DEBUG ••••.••.••.••• 30, 60-69
174

DEF FN ••••••••••••• 144, 171

Definitions
Comments •.••.... 33
Delimiter •••...• 33

----------ltacllelllaeli----------
'7"'.Z"2'. r::. __ / j

MODEL III DISK SYSTEM OWNERS MANUAL -----------TRS•BO rr.1. __________ _

Subject Page
~ ==~=============

Fil'ename .•..•... 33
Options•...• 33

DEF USR•.•..••. 144, 174, 179

DIR ..•.•.........•. 70

Disk BASIC •••••.... 21, 139
Abbreviations •.• 147
Instructions ••.. 18
Starting ...•••.. 18

Disk Drive ••••.•... 27
O and 1 •...•••.. 5, 6, 9
2, 3 (External).5, 6, 21
Expansion ..•.... 5, 6, 8

Diskette
Care•.•... 11
Data ...••.•••... 16, 17, 39, 118
Description ..•.. 10
Inserting •...••. 12
Label 1i ng ..•.•.. 11
Notch-protect .•. 37
Organization 25, 118
Specifications •• 25
System•.•... 12, 13, 17, 39

D0 ••••••••••••••••• 56, 73, 92

Drive Specification. 37

DUAL ••••••••••••••• 7 5, 9 9

DUMP ••••••••••••••• 76, 89, 90

EOF (End-of-file) .. 72, 119, 120,
122, 185, 196,
208, 214, 219

ERROR 7 8

Error .••.....•.•.•. 21, 32, 78
154, 155, 136

Disk BASIC ..•.•. 232
TRSDOS •.•.•.•.•. 137-138, 186

Extents•.•..... 72, 120

FIELD ...•..•...•.•. 185, 206-208,
209, 212

File
Access•..... 191, 218-231
APPEND 41
COPY 54
Manipulation ..•. 186-231

Subject Page
==================

System vs User .. 40
Variable Length.141

Filename•....•. 19, 33, 36, 71
Renaming .•..••.. 97

File Specification.35

FILPTR .•........•.. 134

FORMAT .•..•.••••.•. 14, 16, 30, 39,
93, 111, 116

FORMS•..•..••.. 79

FREE .•..•.•.•..•... 5 5 , 81

GET .•.•..•......... 18 5 , 2 0 8 , 215

Granules

Number of 72

HELP •.•.•••.•..•.•• 83

Hexadecimal•.. 24, 50, 61, 62,
63, 64, 76, 87,
90 I 96

INIT ••.•..•..•••••. 124

INPUT # •..••....•.. 185, 196-200,
203

Installation 5-7

INSTR ...•••.•...•.. 144, 175

I/O•.....•.... 21, 27, 50, 52,
99,164,184

I/O Calls ...•...... 124-135

KI LL ••••••••••••••• 8 4 , 9 4 , 13 5 ,
184, 186

LSET•••.... 185

LIB•...•.•....• 85

LINE INPUT .•....... 144, 176

LINE INPUT # 185, 201

LIST .•...••.••.•... 86

---------- lladaelllaeli----------
234

M_O_D_E_L_I_I_I_D_l_S_K_" _s_YS_T_EM ___ TRS-B0 er~ OWNERS MANUAL

Subject Page
-=---=~ ~========

LOAD•.••... 186

Load••...•.• l, 19

LOF ••....•...•..... 185, 215

Machine-language ••• see Z-80

Maintenance 21-22

MASTER ••••••••••••• 89

Memory
Display •..•..... 61
Map •.•••....•..• 30, 60, 143
User .••....•...• 61, 96

Memory Size? 18, 159, 174

MERGE •••••••••••••• 187, 188

MID$..•...•..•.••.. 144, 175, 177

MKD$, MKI$, MKS$ •.. 185, 216

Notations/Abbreviations ... 23

Notch-protect •...•• 37

OPEN ••••••••••••••• 122, 125, 185,
191, 192-194,
209

Operation •.....•••. 3, 8
Disk ..•.••.•.•.• 2
Nondisk .•••••... 2
Temperature ..••• 25

Operation Manual ..• l, 2, 5, 18,
21, 22, 101,
102, 115

Password •.•.•.•...• 15, 16, 17, 35,
37, 38, 94,
llO, 114

Access ..••....•. 38
Changing .•..•... 43
Master .•.•.•••.. 39, 40
Protecting• 93
Update •...•••••. 38

PATCH •••••••••••••• 19, 90

PAUSE •••••••••••••• 70, 92

POSN••..•...... 125

Subject Page
==================

Power On/Off •.•.•.. 8, 9, 46

PRINT # •.•......••• 185, 196,
202-205

Printer•..•.. 73, 79, 81, 87,
99, 162, 170

Programming ..•.•.•. 2, 18

PROT ...••..•••.•••• 9 3

PURGE •••••••••••••• 9 4

PUT ••..•..•.••..•.. 185, 209-211,
217

PUTEX'r ••••••••••••• 12 7

RAM ••...••.....•... 27, 29, 50, 62,
63, 122, 125,
133, 141, 144,
159, 174, 180,
182, 184, 187,
190

RAMDIR .••.••.•..••. 131

Random File Access .. 218, 220,
226-231

READ •..•••.•....••. 125

Record Length .••... 44
Logical Length .. 72, 120, 121,

123, 125
Number ••••••••.• 68
Number of ••..•.. 72
Physical ••.•.... 123, 133

RELO ••••••••••••••• 9 6

RENAME •.••.•..•••.• 5 5 , 9 7

Reset •.•....•••.••• 12, 46, 50
Location •..•...• 8, 9

REWIND ..•••....•••• 125

ROM ••.••..•...••.•. 28, 30, 64,
141, 180

ROUTE•.....•... 7 3 , 9 9

RSET ••••••••••••••• 185, 212

RS-232-C ..••••••••. 27, 99, 101

-----------ladaelllaeli-----------

MODEL III DISK SYSTEM OWNERS MANUAL
-----------TRS-B0 1,f11 ----------

Subject Page
-----==-======----

RUN •.•...•...•...•. 189

SAVE ...•••.•....... 189

Save .••.••.••...••. l, 19

Sector ...•..•••...• 120, 123

SETCOM ..•••••....•• 101-102

Sequential File Access .• 218,

Starting
Auto ...•....••.. 46
Disk BASIC ..•••. 18
System .••..•••.. 12
TRSDOS ..•....... 13

220-225

Specifications 25

System Diskette •... l, 9, 12

TAPE •..•.•.•....... 103

TIME .•.....•....••• 105

Troubleshooting 21, 22

TRSDOS
Definition ...••• 27
Using •..•••••..• 31

USRn •••.•..•....•.• 143, 174,
179,182

VERF ..••...•.•..... 126

Video output .•..••. 73, 170

WP •....••.••••....• 3 7 , 10 7

WRITE•.•..•.• 126

Z-80 .•.•...•••.••.• 28, 60, 76, 88,
88,115, 121,
144, 155, 159,
174

&H and &O •.•.•.•••• 143, 145

---------- ltaflaelllaeli----------
2ez:(.

OWNERS MA1ruAL
MODEL III DISK SYSTEM

----------TRS-80 f~---------

Service Policy
Radio Shack's nationwide network of service facilities provides quick, convenient,
and reliable repair services for all of its computer products, in most instances.
Warranty service will be performed in accordance with Radio Shack's Limited
Warranty. Non-warranty service will be provided at reasonable parts and labor
costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the services
offered by Radio Shack:

I . If any of the warranty seals on any Radio Shack computer products are broken.
Radio Shack reserves the right to refuse to service the equipment or to void any
remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that it is not
within manufacturer's specifications, including, but not limited to, the
installation of any non-Radio Shack parts, components, or replacement boards,
then Radio Shack reserves the right to refuse to service the equipment, void any
remaining warranty, remove and replace any non-Radio Shack part found in the
equipment, and perform whatever modifications are necessary to return the
equipment to original factory manufacturer's specifications.

3. The cost for the labor and parts required to return the Radio Shack computer
equipment to original manufacturer's specifications will be charged to the
customer in addition to the normal repair charge.

--------lladaelllaeli--------
231

_M_on_EL __ 1_1_I_n_I_s_K_sYS_· _T_EM---TRS-BO JM; ______ OWNE __ RS __ MANU __ AL_

Radio Shack Software License
The following arc the terms and conditions of the Radio Shack Snftware License for
copies of Radio Shack softvvarc either purchased by the customer. or received with
or as part or hardware purchased by customer:

A. Radio Shack grants to CUSTO!vtER a personal. non-exclusive, paid up license to
use the Radio Shack computer software programs received. Title to the media
on which the sothvare is recorded (cassdte and/or disk) or stored (ROM) is
transferred to the CUSTOMER, but not title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce copies or such
software programs except to produce the number of copies required for
personal use by CliSTOvlER (if the sfiftware allows a backup copy to he made),
and to include Radio Shack's copyright notice on all copies of programs
reproduced in whole or in part.

C. CUSTOf\,ffR may resell Radio Shack's system and applications software
(modified or not. in whole or in part), provided CUST0!\11:R has purchased one
copy of the software for each one resold. The provisions of this Softv,are
License (paragraphs A, B. and C) shall also be applicable to third parties
purchasing such software from CUSTOf\1ER.

Important Note
All Radio Shack computer programs are licensed on an ''as is'' basis without
warranty.

Radio Shack shall have no liability or responsibility to customer or any other person
or entity with respect to any liability. loss or damage caused or alleged to be caused
directly or indirectly by computer equipment or programs sold by Radio Shack,
including hut not limited to any interruption or service. loss of business or
anticipatory profih or consequential damages resulting from the use or operation of
such computer or computer programs_

Good data processing procedure dictates that the user test the program, run and test
sample sets of data, and run the system in parallel with the system previously in use
for a period of time adequate to insure that results of operation of the computer or
program are satisfactory.

---------- lad1olhaell----------
238

LIMITED WARRANTY
For a period of 90 days from the date of delivery, Radio Shack warrants to the
original purchaser that the computer hardware unit shall be free from manufac
turing defects. This warranty is only applicable to the original purchaser who
purchased the unit from Radio Shack company-owned retail outlets or duly
authorized Radio Shack franchisees and dealers. This warranty is voided if the
unit is sold or transferred by purchaser to a third party. This warranty shall be
void if this unit's case or cabinet is opened, if the unit has been subjected to
improper or abnormal use, or if the unit is altered or modified. If a defect occurs
during the warranty period, the unit must be returned to a Radio Shack store,
franchisee, or dealer for repair, along with the sales ticket or lease agreement.
Purchaser's sole and exclusive remedy in the event of defect is limited to the
correction of the defect by adjustment, repair, replacement, or complete
refund at Radio Shack's election and sole expense. Radio Shack shall have no
obligation to replace or repair expendable items.

Any statements made by Radio Shack and its employees, incluciing but not
limited to, statements regarding capacity, suitability for use, or performance of
the unit shall not be deemed a warranty or representation by Radio Shack for
any purpose, nor give rise to any liability or obligation of Radio Shack.

EXCEPT AS !;PECIFICALI,. Y PROVIDED IN THIS WARRANTY OR IN THE
RADIO SHACK COMPUTER SALES AGREEMENT, THERE ARE NO
OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL RADIO
SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDIRECT,
SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING
OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

7-80

RADIO SHACK MA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE. ONTARIO L4M 4W5

AUSTRALIA

280-316 VICTORIA ROAD
RYOALMERE, N.S.W. 2116

8749167-980-SP

TANDY CORPORATION

BELGIUM

PARC INOUSTRIEL OE NANINNE
5140 NANINNE

U. K.

BILSTON ROAD WEONESBURY
WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf

